MÓDULO DE ELASTICIDAD COMO CRITERIO DE REGULACIÓN HÍDRICA DEL FREJOL COMÚN (PHASEOLUS VULGARIS L.) BAJO REDUCCIONES CONTROLADAS DE RIEGO

Autores/as

  • Cristhian Vega Ponce
  • Jesús Abel Mejía Marcacuzco Universidad Nacional Agraria La Molina

Palabras clave:

Estrés Hídrico, Módulo de Elasticidad, Riego Parcial de Raíces

Resumen

El propósito de esta investigación consistió en estudiar el efecto de reducciones controladas de riego sobre el módulo de elasticidad (Ev) en plantas de frejol común (Phaseolus vulgaris L.) cultivadas en maceteros de respuesta hidrogravitrópica. Las plantas fueron sometidas a riego completo de raíces (RCR) y riego parcial de raíces (RPR), donde el agua asignada de acuerdo a la curva de retención agua-suelo permitió controlar y configurar cuatro tratamientos (RPR300, RPR500, RCR300 y RCR500 o control). Se monitoreó el potencial hídrico xilemático (Mx) de las hojas, para luego construir la curva presión-volumen (P-V) y determinar Ev. Los resultados mostraron que los diferentes volúmenes de agua aplicados generaron importantes variaciones en los niveles de Ev; sin embargo, en los tratamientos configurados para llevar el suelo a capacidad de campo (RPR500 y RCR500) fue donde se obtuvieron los mejores desempeños de Ev, efecto esperado principalmente antes de aplicar el riego a las plantas (15,63 y 15,34 MPA, respectivamente). Finalmente, aunque ambos tratamientos obtuvieron el mismo nivel de significancia de Ev, RPR500 se destacó sobre el tratamiento control, porque los volúmenes de agua reducidos, combinados con el mantenimiento de diferentes valores de humedad en el suelo explorado por las raíces, pudieron ser claves en el favorecimiento de un ajuste elástico.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

G. Gomes, A. Moritz, G. Freiria, F. Furlan, e L. Assari, “Desempenho produtivo de genótipos de feijão-vagem arbustivo em dois ambientes,” Scientia Agropecuaria, vol. 7, No. 2, pp 85-92, 2016.

S. Cuéllar, y A. Covarrubias, “Alternativas para enfrentar la sequía en el cultivo de frijol (Phaseolus vulgaris L.),” Revista Claridades Agropecuarias, vol. 142, pp 32-41. 2005.

J. Martínez, H. Silva, J. Ledent, and M. Pinto, “Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.),” Eur. J. Agron., vol. 26, no. 1, pp 30-38. 2007.

C. Pimentel, “Respostas das plantas à seca,” en A relação da planta com a água. EDUR -Editora Universidade Federal Rural do Rio de Janeiro, Soropédica-RJ, 2004, 122p.

J. Jiménez, y J. Acosta, “Rendimiento de frijol común (Phaseolus vulgaris L.) y Tépari (Phaseolus acutifolius A. Gray) bajo el método riego-sequía en Chihuahua,” Revista Mexicana de Ciencias Agrícolas, vol. 4, no. 4, pp 557-567, 2013.

M. Behboudian, and Z. Singh, “Water relations and scheduling in grapevine,” Horticultural Reviews, vol. 27, pp 189-225, 2001.

E. Vega, “Desempeño del frijol común bajo riego parcial de raíces en un sistema de respuesta hidrogravitrópica selectiva,”. Tesis doctoral, Universidad Nacional Agraria La Molina, Lima-Perú, 2016.

J. Zegbe, M. Behboudian, A. Lang, and B. Clothier, “Responses of ‘Petopride’ processing tomato to partial rootzone drying at different phenological stages,” Irrigation Science, vol. 24, pp 203-210, 2006.

J. Fernández, A. Díaz-Espejo, J. Infante, P. Durán, J. Palomo, V. Chamorro, I. Girón, and L. Villagarcía, “Water relations and gas exchange in olive trees under regulated deficit irrigation and partial rootzone drying,” Plant and Soil, vol. 284, no. 1, pp. 273-291, 2006.

P. Romero, and A. Martinez-Cutillas, “The effects of partial root-zone irrigation and regulated deficit irrigation on the vegetative and reproductive development of field-grown Monastrell grapevines,” Irrigation Science, vol. 30, no. 5, pp.377–396, 2012.

F. Yan, S. Yanq, F. Song, F. Liu, “Differential responses of stomatal morphology to partial root-zone drying and deficit irrigation in potato leaves under varied nitrogen rates,” Scientia Horticulturae, vol. 145, pp. 76–83, 2012.

R. Nunes, F. Mazzei, A. Oliveira, B. Corrêa da Silva, T. Massi, M. de Menezes, E. Fernandes, D. Michael, and E. Campostrini, “Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) effects on stomatal conductance, growth, photosynthetic capacity, and water-use efficiency of papaya,” Scientia Horticulturae, vol. 183, pp. 13-22, 2015.

A. Sepaskhah, S. Ahmadi, “A review on partial root-zone drying irrigation,” International Journal of Plant Production, vol. 4, no. 4, pp. 241-258, 2015.

I. Abrisqueta, W, Conejero, M Valdés-Vela, J. Vera, M. Ortuño, and M. Ruiz-Sánchez, “Stem water potential estimation of drip-irrigated early-maturing peach trees under Mediterranean conditions,” Computers and Electronics in Agriculture, vol. 114, pp. 7-13, 2015.

B. Goldenbogen, G. Wolfgang, M. Hemmen, J. Uhlendorf, A. Herrmann, and E. Klipp “Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis,” Open Biol, vol. 6, no. 160136, pp 1-14, 2016.

T. Du, S. Kang, J. Zhang, W. Davies, “Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security,” J. Exp. Bot., vol. 66, no. 8, pp. 2253-2269, 2015.

N. Arabzadeh and S. Emadian, “Effect of water (drought) stress on water relations of Haloxylon aphyllum and H. persicum,” Iranian Journal of Science & Technology, Trans. A, vol. 34, no. A3, pp 245-255, 2010.

M. Gijón, C. Gimenez, D. Perez-López, J. Guerrero, J. Couceiro, and A. Moriana, “Water relations of pistachio (Pistacia vera L.) as affected by phenological stages and water regimes,” Scientia Horticulturae, vol. 128, pp. 415-422, 2011.

K. Hessini, J. Martínez, M. Gandour, A. Albouchi, A. Soltani, and C. Abdelly, “Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora,” Environ. Exp. Bot., vol. 67, no. 2, pp. 312-319, 2009.

N. Saruhan, A. Sağlam, M. Demiralay, and A. Kadioğlu, “Apoplastic and symplastic solute concentrations contribute to osmotic adjustment in bean genotypes during drought stress,” Turk J. Biol., vol. 36, pp. 151-160, 2012.

SAS Institute Inc. “User´s Guide,” SAS/STAT® v9.1, 2004.

M. Bittelli and M. Flury, “Errors in water retention curves determined with pressure plates,” Soil Science Society of America Journal, vol. 73, no. 5, pp. 1453-1460, 2009.

M. Khlosi, “Performance evaluation of models that describe the soil water retention curve between saturation and oven dryness,” Vadose Zone Journal, vol. 7, pp. 86-97, 2008.

A. Pardossi, L. Incrocci, G. Incrocci, F. Malorgio, P. Battista, L. Bacci, B. Rapi, P. Marzialetti, J. Hemming, and J. Balendonck, “Root zone sensors for irrigation management in intensive agriculture,” Sensors, vol. 9, pp. 2809-2835, 2009.

P. Brown and C. Tanner, “Alfalfa osmotic potential: A comparison of the water-release curve and frozen-tissue methods,” Agron. J., vol.75, pp. 91-93, 1983.

P. Romero, J. Pérez-Pérez, F. del Amor, A. Martínez-Cutillas, I. Dodd, and P. Botía, “Partial root zone drying exerts different physiological responses on field-grown grapevine (Vitis vinifera cv. Monastrell) in comparison to regulated deficit irrigation,” Functional Plant Biology, vol. 41, no. 11, pp. 1087-1106, 2014.

J. Jara y J. Celis J, “Módulo de elasticidad y otros parámetros biofísicos en frijol negro,” Agro-Ciencia, vol. 5, no. 1, pp. 49-56, 1989.

M. Tyree and T. Hammel, “The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique,” J. Exp. Bot., vol. 23, no. 1, pp. 267-282, 1972.

E. Stadelmann, “The derivation of the cell wall elasticity function from the cell turgor potential,” J. Exp. Bot., vol. 35, no. 6, pp. 859-868, 1984.

J. Comstock, “Hydraulic and chemical signaling in the control of stomatal conductance and transpiration,” J. Exp. Bot., vol. 53, pp. 195-200, 2002.

K. Prado, and C. Maurel, “Regulation of leaf hydraulics: from molecular to whole plant levels,” Frontiers in Plant Science, vol. 4, no. 255, pp. 1-14, 2013.

F. Camarena, A. Huaringa, y E. Mostacero, “Manejo agronómico” en Tecnología para el incremento de la producción de frijol común (Phaseolus vulgaris L.). Primera edición. Universidad nacional Agraria La Molina – Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica. Lima-Perú, 153 p.

B. Dichio, C. Xiloyannis, K. Angelopoulos, V. Nuzzo, S. Bufo, and G. Celano, “Drought-induced variations of water relations parameters in Olea europaea,” Plant Soil, vol. 257, no. 2, pp. 381-389, 2003.

A. Patakas and B. Noitsakis, “Cell wall elasticity as a mechanism to maintain favorable water relations during leaf ontogeny in grapevines,” Am. J. Enol. Vitic., vol. 48, pp. 352–356, 2002.

H. Félix, “Regulación de la hidratación y la turgencia foliares por mecanismos evitadores del estrés, y resistencia a déficit hídrico en vid: modelo vs. Experimentos,” Tesis doctoral, Universidad Nacional de Cuyo, Mendoza-Argentina, 2011.

M. Bolarin, M. Estañ, M. Caro, R. Romero-Aranda, and J. Cuartero, “Relationship between tomato fruit growth and fruit osmotic potential under salinity,” Plant Sci, vol. 160, no. 6, pp. 1153-1159, 2001.

D. Díaz-Abril, J. Vélez-Sánchez, and P. Rodríguez, “Irrigation reduction resistance mechanisms in the rapid fruit growth stage of pears (Pyrus communis L.),” Agron. colomb., vol. 24, no. 1, pp. 25-32, 2016.

Publicado

30-06-2017

Cómo citar

Vega Ponce, C., & Mejía Marcacuzco, J. A. (2017). MÓDULO DE ELASTICIDAD COMO CRITERIO DE REGULACIÓN HÍDRICA DEL FREJOL COMÚN (PHASEOLUS VULGARIS L.) BAJO REDUCCIONES CONTROLADAS DE RIEGO. Revista Investigación &Amp; Desarrollo, 1(17). Recuperado a partir de https://www1.upb.edu/revista-investigacion-desarrollo/index.php/id/article/view/150

Número

Sección

Ingenierías