NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE TORQUE AND BRAKE FORCE OF A PELTON TURBINE USING THE k-ε AND SST TURBULENCE MODELS

Authors

  • Yessica Salazar Marval Universidad de Oriente, Barcelona
  • Yordy González–Rondón Universidad de Oriente, Barcelona
  • Johnny Martínez Universidad de Oriente, Barcelona

DOI:

https://doi.org/10.23881/idupbo.024.1-2i

Keywords:

Numerical Simulation, Pelton Turbine, Brake Force and Torque, K-Ε Turbulence Models, SST Turbulence Models

Abstract

This article presents the numerical and experimental simulation of the torque and brake force of a Pelton Armfield FM-32 turbine for different openings of the injector nozzle that regulates the inlet flow, with the purpose of studying the behavior of the turbine, based on output performance. The methodology consisted of building the geometry of the Pelton turbine with CAD software, physical models were developed with different percentages of injector nozzle openings (100, 85, 75, 50, 25 and 15%), the domains were discretized. of calculations applying the unstructured meshing technique and the simulations were carried out in a transient state applying the k-ε and SST turbulence models. The numerical results showed the numerical convergence curves, the experimental and numerical behavior of the torque and brake force of the Pelton turbine, and the percentage error of the numerical results. It was concluded that the turbulence model that best suits the estimation of the variables studied was the SST model, which represents greater reliability and accuracy in the results.

Downloads

Download data is not yet available.

Author Biographies

Yessica Salazar Marval, Universidad de Oriente, Barcelona

Centro de Termofluidodinámica y Mantenimiento

Yordy González–Rondón, Universidad de Oriente, Barcelona

Instituto de Investigaciones en Biomedicina y Ciencias Aplicadas “Dra. Susan Tai”

Johnny Martínez, Universidad de Oriente, Barcelona

Departamento de Ingeniería Mecánica

References

A. Perrig, F. Avellan, J. L. Kueny, M. Farhat, & E. Parkinson. “Flow in a Pelton turbine bucket: numerical and experimental investigations”. ASME, Vol. 128, 2006. https://doi.org/10.1115/1.2170120

A. Perrig. Hidrodinámica de los flujos de superficie libre en los alabes de una turbina Pelton. Doctorado en ciencias, Escuela Politécnica Federal en Lausana Suiza. 2007.

Armfield. Manual de instrucciones FM32 - Unidad de demostración de una turbina. 2007.

A. W. Dametew. “Design and analysis of small hydro power for rural electrification”. Global Journal of Researches in Engineering, 16(6), 2016.

B. M. López-Rebollar, et al. “Performance study of annular settler with gratings in circular aquaculture tank using computational fluid dynamics”. Aquacultural Engineering, 92, 102143, 2021. https://doi.org/10.1016/j.aquaeng.2020.102143

B. W. Solemslie & O. G. Dahlhaug. “A reference Pelton turbine design”, in IOP conference series: earth and environmental science, 2012, Vol. 15, No. 3, p. 032005.

C. Reyes, & B. P. Stephen. Diseño y fabricación de un freno de prony. Trabajo de grado, Universidad del Valle de Guatemala. 2017.

D. Adanta & A. I. Siswantara. “Assessment of turbulence modelling for numerical simulations into pico hydro turbine”. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 46(1), 21-31, 2018. https://www.akademiabaru.com/submit/index.php/arfmts/article/view/2199

D. Singh, & UN.ESCAP. Micro hydro power: resource assessment handbook. 2009. https://hdl.handle.net/20.500.12870/5214

F. R. Menter, M. Kuntz, & R. Langtry. “Ten years of industrial experience with the SST turbulence model”. Turbulence, heat and mass transfer, 4(1), 625-632, 2003.

G. Xinfeng, S. Jie, Z. Ye, C. Jianguo, Z. Hui, et al. “Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets”. Renewable Energy, Volume 173, Pages 1040-1056. 2021. https://doi.org/10.1016/j.renene.2021.04.072

H. Shikama, T. Wang, T. Yamagata, & N. Fujisawa. “Experimental and numerical studies on the performance of a waterfall-type cross-flow hydraulic turbine”. Energy for Sustainable Development, 64, 128-138, 2021. https://doi.org/10.1016/j.esd.2021.09.001

J. Guzmán. Desarrollo de un sistema de adquisición de datos para un banco de prueba de una turbina hidráulica. Trabajo de Post-Grado, Departamento de Eléctrica, Universidad de Oriente, Núcleo de Anzoátegui. 2007.

L. Velásquez, A. Rubio-Clemente & E. Chica. Numerical and Experimental Analysis of Vortex Profiles in Gravitational Water Vortex Hydraulic Turbines. Energies, 17(14), 3543. 2024.

M.A. Qasim, V.I. Velkin, S.E. Shcheklein, A.O.Hanfesh, T.Z. Farge, F.A. Essa. “A Numerical Analysis of Fluid Flow and Torque for Hydropower Pelton Turbine Performance Using Computational Fluid Dynamics”. Inventions, 7, 22, 2022. https://doi.org/10.3390/inventions7010022

M. Á. Zamora-Juárez, et al. “Parametric assessment of a Pelton turbine within a rainwater harvesting system for micro hydro-power generation in urban zones”. Energy for Sustainable Development, 73, 101-115, 2023. https://doi.org/10.1016/j.esd.2023.01.015

M. Elgammi & A. A. Hamad. “A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon”. Renewable Energy, 195, 1-16, 2022. https://doi.org/10.1016/j.renene.2022.05.131

M. Sinagra, C. Aricò, T. Tucciarelli, & G. Morreale. “Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production”. Renewable Energy, 149, 980-986. 2020.

O. R. Alomar, H. M. Abd, M. M. M. Salih, & F. A. Ali. “Performance analysis of Pelton turbine under different operating conditions: An experimental study”. Ain Shams Engineering Journal, 13(4), 101684, 2022. https://doi.org/10.1016/j.asej.2021.101684

V. Gupta, V. Prasad, and R. Khare. “Numerical simulation of six jet Pelton turbine model”. Energy, 104, 24–32, 2016. https://doi.org/10.1016/j.energy.2016.03.110

Y. González. Automatización del sistema de adquisición de datos de una bomba reciprocante tipo pistón. Trabajo de Post-Grado, Departamento de Eléctrica, Universidad de Oriente. Núcleo de Anzoátegui. 2007.

Y. González-Rondón, J. E. Rengel & J. J. Martínez. “Simulación termofluidodinámica en un molde de colada continua de acero”. Memoria Investigaciones en Ingeniería, (21), 29-42, 2021. https://doi.org/10.36561/ING.21.4

Y. Salazar. Evaluación del comportamiento fluidodinámico del chorro de agua en las cucharas de la turbina tipo Pelton FM-32 mediante un software de CFD. Trabajo de grado, Universidad de Oriente, Venezuela. 2015.

Published

2024-07-31

How to Cite

Salazar Marval, Y., González–Rondón, Y., & Martínez, J. (2024). NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE TORQUE AND BRAKE FORCE OF A PELTON TURBINE USING THE k-ε AND SST TURBULENCE MODELS. Revista Investigación &Amp; Desarrollo, 24(1), 21–33. https://doi.org/10.23881/idupbo.024.1-2i

Issue

Section

Ingenierías