HYDROGEOLOGICAL MODELING IN THE CENTRAL VALLEY OF COCHABAMBA-BOLIVIA

Authors

  • Brayan López Universidad Privada Boliviana
  • Laura Rosales Universidad Privada Boliviana
  • Oliver Saavedra Universidad Privada Boliviana

DOI:

https://doi.org/10.23881/idupbo.023.1-2i

Keywords:

Aguas Subterráneas, Cochabamba, Valle Central, Modelo Hidrogeológico

Abstract

In the metropolitan region of Cochabamba, an accelerated growth of the urban footprint has been observed, towards the aquifer recharge areas leading to an increase in the groundwater stress, with groundwater consumption being approximately 65% of total water consumption. Then, there is a need for a hydrogeological study in a sector of alluvial fans with extensive and productive aquifers, in the Central Valley of Cochabamba. In this sense a monitoring network was established to measure phreatic levels in drinking water supply and irrigation wells in the Municipalities of Tiquipaya and Colcapirhua, where 26 measurements were made in a period of 6 months between April and September 2021. A simplified hydrogeological model was set up in steady-state condition, to understand the behavior of the aquifers in the area, using Visual MODFLOW Flex, considering four layers: two of sand, gravel or blocks and two of silt and clays, each with their respective conductivities. Subsequently, Calibration of parameters was performed resulting in a Correlation of 0.94, an RMS (Root Mean Square) of 17 m and a Normalized RMS of 16%. In the Validation, a Correlation of 0.63 and a Normalized RMS of 78% were obtained. The trend of the main groundwater flow direction is from north to south. Significant decreases in water levels were observed during the monitoring period, particularly in wells OG-5 and OG-7. In wells OG-18 and OG-10, located in the northwest with deep levels and in the central area with shallow ones, respectively, the water table has risen by 3 to 5 meters since 2019, evidencing a recharge corresponding to alluvial fans, mainly from the Chijlawiri river. Therefore, it is crucial to carry out periodic monitoring of phreatic levels, as well as to characterize the quality of groundwater in the area.

Downloads

Download data is not yet available.

Author Biographies

Brayan López, Universidad Privada Boliviana

Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA)

Laura Rosales, Universidad Privada Boliviana

Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA)

Oliver Saavedra, Universidad Privada Boliviana

Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA) Facultad de Ingenierías y Arquitectura

References

UN-Habitat, «Chapter 1: The Diversity of Cities and Visions for Urban Futures», en World cities report 2022: envisaging the future of cities, Nairobi, Kenya: United Nations Human Settlements Programme (UN-Habitat), 2022, pp. 1-30.

J. E. Cabrera, A. Alarcon, H. Terraza, D. Maleki, y S. Lew, Plan de acción: Área metropolitana de Cochabamba sostenible. ICES - Banco Interamericano de Desarrollo, 2013. doi: 10.13140/RG.2.1.1673.4961.

INE (Instituto Nacional de Estadística), «Población y Hechos Vitales», INE. https://www.ine.gob.bo/index.php/censos-y-proyecciones-de-poblacion-sociales/ (accedido 31 de mayo de 2023).

OECD, Drying Wells, Rising Stakes: Towards Sustainable Agricultural Groundwater Use. en OECD Studies on Water. OECD, 2015. doi: 10.1787/9789264238701-en.

UN Water, Ed., Groundwater making the invisible visible. en The United Nations world water development report, no. 2022. Paris: UNESCO, 2022.

GADC (Gobierno Autónomo Departamental de Cochabamba), SDC (Servicio Departamental de Cuencas), y DGIA (Dirección de Planificación y Gestión Integral del Agua), «Plan Director de la Cuenca del río Rocha: “Estado de situación y propuesta de lineamientos estratégicos”», Cochabamba, 2014.

I. A. Shiklomanov, «World Freshwater Resources», en Water in crisis: a guide to the world’s fresh water resources, P. H. Gleick, Ed., New York: Oxford University Press, 1993, pp. 13-24.

IAH, «The UN-SDGs for 2030: Essential Indicators for Groundwater», 2017. [En línea]. Disponible en: https://iah.org/wp-content/ uploads/2017/04/IAH-Groundwater-SDG-6-Mar-2017.pdf.

«Plan Maestro Metropolitano de Agua y Saneamiento de Cochabamba Bolivia: Informe Final. Resumen Ejecutivo», Cochabamba, 2014.

P. Dillon et al., «Sixty years of global progress in managed aquifer recharge», Hydrogeol J, vol. 27, n.o 1, pp. 1-30, feb. 2019, doi: 10.1007/s10040-018-1841-z.

ONU-Agua, «Aguas Subterráneas Hacer visible el recurso invisible», París, Francia, 2022.

SEMAPA (Servicio Municipal de Agua Potable y Alcantarillado), «Estudio Socioeconomico», Cochabamba, 2016.

«Sistema de Información de Aguas Subterráneas de Bolivia - MMAyA - SIARH». https://datos.siarh.gob.bo/index.php?module=siasbo&smodule=geovisor (accedido 31 de mayo de 2023).

M. Velis, K. I. Conti, y F. Biermann, «Groundwater and human development: synergies and trade-offs within the context of the sustainable development goals», Sustain Sci, vol. 12, n.o 6, pp. 1007-1017, nov. 2017, doi: 10.1007/s11625-017-0490-9.

«CIICA forma parte de la plataforma de Aguas Subterráneas del Valle de Cochabamba | UPB». https://www.upb.edu/es/contenido/ciica-forma-parte-de-la-plataforma-de-aguas-subterr%C3%A1neas-del-valle-de-cochabamba (accedido 31 de mayo de 2023).

F. Montalvan, «Intervención de Monitoreo de Aguas Subterráneas en Bolivia inicia actividades de recolección de información y trabajo de campo en los municipios de Sacaba y Santa Cruz de la Sierra», OTCA, 30 de agosto de 2022. http://otca.org/intervencion-monitoreo-de-aguas-subterraneas-en-bolivia/ (accedido 31 de mayo de 2023).

L. CR y Inayathulla, «Groundwater Flow Analysis Using Visual Modflow», IOSR-JMCE, vol. 12, n.o 2, pp. 05-09, abr. 2015, doi: 10.9790/1684-12270509.

P. C. Lakshmi y R. M. Narayanan, «Study on Groundwater Modeling of Aquifers Using Visual Modflow», International Research Journal of Engineering and Technology (IRJET), vol. 02, n.o 02, pp. 23-26, may 2015.

V. Hariharan y M. Uma Shankar, «A review of visual MODFLOW applications in groundwater modelling», IOP Conf. Ser.: Mater. Sci. Eng., vol. 263, p. 032025, nov. 2017, doi: 10.1088/1757-899X/263/3/032025.

Sushant Kumar, M K Choudhary, y T R Nayak, «Groundwater Modelling in Bina River Basin, India using Visual Modflow», 2017, doi: 10.13140/RG.2.2.31215.33440.

S. S. Sathe y C. Mahanta, «Groundwater flow and arsenic contamination transport modeling for a multi aquifer terrain: Assessment and mitigation strategies», Journal of Environmental Management, vol. 231, pp. 166-181, feb. 2019, doi: 10.1016/j.jenvman.2018.08.057.

W. Liu et al., «Quantifying the streamflow response to groundwater abstractions for irrigation or drinking water at catchment scale using SWAT and SWAT–MODFLOW», Environ Sci Eur, vol. 32, n.o 1, p. 113, dic. 2020, doi: 10.1186/s12302-020-00395-6.

X. Li et al., «Study of groundwater using visual MODFLOW in the Manas River Basin, China», Water Policy, vol. 18, n.o 5, pp. 1139-1154, oct. 2016, doi: 10.2166/wp.2016.180.

J. F. Ortiz Céspedes, «Análisis del potencial hídrico subterráneo, en la zona de K’juchu Punata, mediante modelación con Visual Modflow», Proyecto de Grado de Licenciatura en Ingeniería Civil, Universidad Católica Boliviana «San Pablo», Cochabamba, 2013.

L. Rosales, O. C. Saavedra, y W. Soruco, «MODELACIÓN HIDROGEOLÓGICA EN UN ABANICO ALUVIAL DE COCHABAMBA-BOLIVIA», I&D, vol. 20, n.o 1, pp. 51-66, jul. 2020, doi: 10.23881/idupbo.020.1-4i.

J. T. Saavedra, L. A. Rosales, y O. C. Saavedra, «MODELACIÓN DE AGUAS SUBTERRÁNEAS DEL VALLE DE COCHABAMBA UTILIZANDO MODFLOW», I&D, vol. 20, n.o 1, pp. 81-88, jul. 2020, doi: 10.23881/idupbo.020.1-6i.

ASF DAAC, «PALSAR_Radiometric_Terrain_Corrected_high_res». NASA Alaska Satellite Facility DAAC, 2014. doi: 10.5067/Z97HFCNKR6VA.

C. Ledo, «Documento de Trabajo Negowaat Bolivia N° 4. Tiquipaya: Urbanización e infraestructura». 2005.

SEI (Stockholm Environmental Institute) US Center, «Formulación y Actualización del Plan Director de la Cuenca del Río Rocha, bajo un enfoque de Adaptación al Cambio Climático. Entregable C: “Caracterización de la Cuenca del río Rocha”», Cochabamba.

educa.com, «Colcapirhua - Municipio de Quillacollo», 22 de diciembre de 2015. https://www.educa.com.bo/geografia/colcapirhua-municipio-de-quillacollo (accedido 31 de mayo de 2023).

GAM Colcapirhua (Gobierno Autónomo Municipal de Colcapirhua), «Plan Territorial de Desarrollo Integral del Gobierno Autónomo Municipal de Colcapirhua. Diagnóstico 2016 - 2020». 2020. [En línea]. Disponible en: https://www.colcapirhua.gob.bo/pdf/planificacion/PDTI_COLCAPIRHUA_DIAGNOSTICO_PARTE_I.pdf

S. Renner y C. Velasco, «Geología y Hidrogeología del Valle Central de Cochabamba. – Boletín del Servicio Nacional de Geología y Minería (SERGEOMIN)». 2000.

Waterloo Hydrogeologic, «User’s Manual. Visual MODFLOW Flex 6.1. Integrated Conceptual & Numerical Groundwater Modeling Software», Waterloo, Canada, 2019.

D. K. Todd y L. W. Mays, Groundwater hydrology, 3rd ed. Hoboken, NJ: Wiley, 2005.

Published

2023-07-31

How to Cite

López, B., Rosales, L., & Saavedra, O. (2023). HYDROGEOLOGICAL MODELING IN THE CENTRAL VALLEY OF COCHABAMBA-BOLIVIA. Revista Investigación &Amp; Desarrollo, 23(1). https://doi.org/10.23881/idupbo.023.1-2i

Issue

Section

Ingenierías