ERA5 CLIMATIC REANALYSIS: A REVIEW ON ITS USE FOR CALCULATING ATMOSPHERIC ATTENUATION FOR SATELLITE COMMUNICATION SYSTEMS (Review paper)

Authors

  • Gustavo Siles Soria Universidad Privada Boliviana

DOI:

https://doi.org/10.23881/idupbo.022.1-12i

Keywords:

Atmospheric Propagation, Satellite Communications, Radiowave Propagation, ERA5 Reanalysis

Abstract

Meteorological parameters extracted from climatic reanalysis are used as input data in global prediction models developed by the International Telecommunications Union, aimed to analyze and quantify attenuation occurring in satellite communication systems, caused by the atmosphere and its natural constituents. In the present paper, a review of ERA5, the most recent reanalysy from the European Centre for Medium-Range Weather Forecasts, and its main characteristics is presented, including the different type of available data as well as practical examples of how to download them from the servers. Once a series of parameters having interest in radiopropagation are identified, a summary on models and procedures that could allow estimating atmospheric attenuation caused by gasses, clouds, and rain is provided.

Downloads

Download data is not yet available.

Author Biography

Gustavo Siles Soria, Universidad Privada Boliviana

Laboratorio de Radiocomunicaciones (LRC)

References

Copernicus Program, The Copernicus Climate Change Service (C3S). Último acceso: 14 de mayo, 2022. [Online]. Disponible: https://climate.copernicus.eu/

Copernicus Program, Climate Data Store (CDS). Último acceso: 14 de mayo, 2022. [Online]. Disponible: https://cds.climate.copernicus.eu/

W. S. Parker, “Reanalyses and observations: What's the difference?" Bulletin of the American Meteorological Society, vol. 97, no. 9, pp. 1565-1572, 2016.

H. Hersbach, B. Bell, P. Berrisford, et al. “The ERA5 global reanalysis”. Q. J. R. Meteorol Soc. 146: 1999– 2049, 2020.

B. Bell, H. Hersbach, A. Simmons, P. Berrisford, P. Dahlgren, P. A. Horányi, J. Muñoz-Sabater, J. Nicolas, R. Radu, D. Schepers, et al. “The ERA5 global reanalysis: Preliminary extension to 1950”. Q. J. R. Meteorol. Soc. 147, 4186–4227, 2021.

L. Bengtsson, M. Kanamitsu, P.W. Kållberg, S.M. Uppala, “FGGE 4-dimensional data assimilation at ECMWF”. Bulletin of the American Meteorological Society, 63, 29–43, 1982.

J.K. Gibson, P. Kållberg, S.M. Uppala, A. Hernandez, A. Nomura, E. Serrano, “ECMWF re-analysis project report 1, ERA-15 description (version 2)”. Technical Report, ECMWF, Reading, UK, 1999.

S.M. Uppala, et al. “The ERA-40 re-analysis”. Quarterly Journal of the Royal Meteorological Society, 131, 2961–3012. 2005.

D.P. Dee, “The ERA-Interim reanalysis: configuration and performance of the data assimilation system.”, Quarterly Journal of the Royal Meteorological Society, 137, 553–597, 2011.

ITU-R, “Attenuation by atmospheric gases and related effects,” ITU-R Recommendation P.676-12, August 2019.

ITU-R, "Water vapour: surface density and total columnar content,"ITU-R Recommendation P.836-6, December 2017.

ITU-R, "Attenuation due to clouds and fog," ITU-R Recommendation P.840-8, December 2019.

L. Luini, C. Riva, L. Quibus, D. Vanhoenacker-Janvier, G. Siles, and J. Riera, “Water vapor retrieval to support electromagnetic wave propagation experiments: Results from different techniques," in 2019 13th European Conference on Antennas and Propagation (EuCAP). IEEE, 2019, pp. 1-5.

G. Siles, J.P. Arciénega, Y. Balderrama, “Accuracy assessment of water vapor and cloud attenuation estimated from ERA5 single level parameters at two sites with large difference of altitude," in 2022 16th European Conference on Antennas and Propagation (EuCAP). IEEE, 2022, pp. 1-5.

L. Luini, C. Riva, A. Panzeri, A. Rocha, S. Mota, F. Marzano, A. Marziani, M. Biscarini, F. Consalvi, V. Schena et al., “The MEKaP Project: Measuring Tropospheric Impairments at Ka Band with MEO Satellites," in 2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020, pp. 1-5.

J. Queyrel, X. Boulanger, L. Castanet, J. Nessel, M. Zemba, T. Prytz, and A. Martellucci, “Preliminary results of the THOR7 propagation experiment in the north pole region," in 25th Ka and Broadband Communications Conference, 2019.

A. Benarroch, G. Siles, J.M. Riera, “Height of the 0ºC Isotherm and the Melting Layer in Madrid: Comparison of Estimations from Different Sensors," in 2022 16th European Conference on Antennas and Propagation (EuCAP). IEEE, 2022, pp. 1-5

E. A. Pelat, “Characterization of the tropospheric attenuation affecting earth-space links using ERA5 data," Master's thesis, Politecnico di Milano, 2020.

ECMWF, L137 model level definitions. Último acceso: 14 de mayo, 2022. [Online]. Disponible: https://confluence.ecmwf.int/display/UDOC/L137+model+level+definitions

J. Muñoz-Sabater et. al., “ERA5-Land: a state-of-the-art global reanalysis dataset for land applications”, Earth System Science Data, τ. 13, τχ. 9, σσ. 4349–4383, 2021.

ECMWF, ERA5: Data Documentation. Parameter listings. Último acceso: 14 de mayo, 2022. [Online]. Disponible:https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation#ERA5:datadocumentation-Parameterlistings

Copernicus Program, How to use the CDS API. Último acceso: 14 de mayo, 2022. [Online]. Disponible: https://cds.climate.copernicus.eu/api-how-to

ECMWF, ERA5: Data Documentation. Parameter listings. Último acceso: 14 de mayo, 2022. [Online]. Disponible:https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation#ERA5:datadocumentation-Parameterlistings

Climate Change Service, CDS Toolbox Documentation. Último acceso: 14 de mayo, 2022. [Online]. Disponible: https://cds.climate.copernicus.eu/toolbox/doc/index.html

ECMWF, Parameter Database. Último acceso: 14 de mayo, 2022. [Online]. Disponible: https://apps.ecmwf.int/codes/grib/param-db/

ITU-R, “Reference standard atmospheres,” ITU-R Recommendation P.835-6, December 2017.

ECMWF, ERA5: compute pressure and geopotential on model levels, geopotential height and geometric height. Último acceso: 14 de mayo, 2022. [Online]. Disponible: https://confluence.ecmwf.int/display/CKB/ERA5%3A+compute+pressure+and+geopotential+on+model+levels%2C+geopotential+height+and+geometric+height

ECMWF, IFS Documentation, Part IV: Physical Processes. Último acceso: 14 de mayo, 2022. [Online]. Disponible: https://www.ecmwf.int/sites/default/_les/elibrary/2016/17117-part-iv-physical-processes.pdf#subsection.7.4.2, 2016.

A. L. Buck, “New equations for computing vapor pressure and enhancement factor," Journal of Applied Meteorology and Climatology, vol. 20, Nº. 12, pp. 1527-1532, 1981.

O. A. Alduchov and R. E. Eskridge, “Improved magnus form approximation of saturation vapor pressure," Journal of Applied Meteorology, vol. 35, no. 4, pp. 601-609, 1996.

World Meteorological Organization, Guide to instruments and methods of observation. Volume I – measurement of meteorological variables, Chapter 12 Measurement of Upper-Air Pressure, Temperature and Humidity Edition. Geneva. 2018.

X. Boulanger, Improvement Of Tropospheric Propagation Instantaneous And Statistical Models For Earth-Space Paths. CNES Technical Note Ed. 2. Rev. 1. Toulouse. 2021.

L. Luini, C. Riva, C. Capsoni and A. Martellucci, "Attenuation in Nonrainy Conditions at Millimeter Wavelengths: Assessment of a Procedure," in IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 7, pp. 2150-2157, July 2007, doi: 10.1109/TGRS.2007.895336.

E. Salonen and S. Uppala, “New prediction method of cloud attenuation,” Electronics Letters, vol. 27, no. 12, pp. 1106–1108, 1991.

V. Mattioli, P. Basili, S. Bonafoni, P. Ciotti, and E. Westwater, “Analysis and improvements of cloud models for propagation studies,” Radio Science, vol. 44, 2009.

M. Decker, E. Westwater, and F. Guiraud, “Experimental evaluation of ground-based microwave radiometric sensing of atmospheric temperature and water vapor profiles,” Journal of Applied Meteorology, vol. 17, no. 12, pp. 1788–1795, 1978.

ITU-R, "Propagation data and prediction methods required for the design of earth-space telecommunication systems," ITU-R Recommendation P.618-13, December 2017.

ITU-R, "Characteristics of precipitation for propagation modelling," ITUR Recommendation P.837-7, June 2017.

J. S. Marshall and W. M. K. Palmer, "The distribution of raindrops with size," Journal of Meteorology, vol. 5, no. 4, pp. 165-166, 1948.

M. O. García, N. Jeannin, L. Féral, and L. Castanet, "Use of WRF model to characterize propagation effects in the troposphere," in 2013 7th European Conference on Antennas and Propagation (EuCAP). IEEE, 2013, pp. 1377-1381.

R. Gunn and G. D. Kinzer, "The terminal velocity of fall for water droplets in stagnant air," Journal of Meteorology, vol. 6, no. 4, pp. 243-248, 1949.

G. B. Foote and P. Du Toit, "Terminal velocity of raindrops aloft,"Journal of Applied Meteorology, vol. 8, no. 2, pp. 249{253, 1969.

D. Atlas and C. W. Ulbrich, "Path-and area-integrated rainfall measurement by microwave attenuation in the 1{3 cm band," Journal of Applied Meteorology and Climatology, vol. 16, no. 12, pp. 1322{1331, 1977.

Published

2022-07-31

How to Cite

Siles Soria, G. (2022). ERA5 CLIMATIC REANALYSIS: A REVIEW ON ITS USE FOR CALCULATING ATMOSPHERIC ATTENUATION FOR SATELLITE COMMUNICATION SYSTEMS (Review paper). Revista Investigación &Amp; Desarrollo, 22(1). https://doi.org/10.23881/idupbo.022.1-12i

Issue

Section

Ingenierías