HYDROGEOCHEMICAL CHARACTERIZATION AND GROUNDWATER QUALITY INDEX IN THE LOWER VALLEY OF COCHABAMBA, BOLIVIA

Authors

  • Ivette Echeverría Universidad Privada Boliviana
  • Omar Mamani Universidad Privada Boliviana
  • Oliver Saavedra Universidad Privada Boliviana

DOI:

https://doi.org/10.23881/idupbo.025.1-10i

Keywords:

Groundwater quality, Hydrochemistry, Piper diagram, Water Quality Index

Abstract

This study conducted a hydrogeochemical characterization of groundwater in the Lower Valley of Cochabamba through physicochemical analysis, Piper diagram interpretation, estimation of the Water Quality Index (WQI), and evaluation of static water levels. The results show that most wells exhibit a coherent ionic balance. According to the WQI, water quality is generally rated as good or excellent; however, certain wells exceeded the maximum permissible values established by the Bolivian Standard NB-512 for drinking water, particularly in terms of turbidity, sodium, sulfates, and chlorides. Iron concentrations ranged from 0.34 to 6.58 mg/L and manganese from 0 to 0.50 mg/L, with all samples exceeding the regulatory limit for iron and some for manganese. From a hydrochemical perspective, 47% of the samples were classified as calcium and/or magnesium bicarbonate waters, typical of recharge zones with low geochemical evolution, while 35% corresponded to sodium bicarbonate waters, associated with cation exchange processes. Chloride and/or sulfate sodium-type facies were also identified in wells located in lower areas, reflecting more evolved geochemical conditions or anthropogenic influence. The analysis of static water levels revealed a predominant north-to-south groundwater flow direction, explaining the accumulation of salts and metals in terminal wells. Due to the elevated concentrations of iron and manganese, specific water treatment processes are recommended, along with complementary microbiological studies to assess potential sources of anthropogenic contamination. Overall, the findings highlight the need for integrated and sustainable groundwater resource management in the Lower Valley of Cochabamba.

Downloads

Download data is not yet available.

Author Biographies

  • Ivette Echeverría, Universidad Privada Boliviana
    Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA)Fundación Aguatuya,
  • Omar Mamani, Universidad Privada Boliviana
    Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA)
  • Oliver Saavedra, Universidad Privada Boliviana
    Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA)

References

[1] E. A. M. Orantes, J. I. V. Cañas, T. G. Roffe3, and E. academico P. D. C. A. Z. Gonzalez, “El agua como recurso esencial para la vida y el cual hay que garantizar su sostenibilidad ante la adversidad del cambio climático,” Rev. Iberoam. Bioeconomía Cambio Climático, vol. 1, no. 2, pp. 140–155, 2015.

[2] A. Gonzales Amaya, J. Ortiz, A. Durán, and M. Villazon, “Hydrogeophysical methods and hydrogeological models: basis for groundwater sustainable management in Valle Alto (Bolivia),” Sustain. Water Resour. Manag., vol. 5, no. 3, pp. 1179–1188, Sep. 2019, doi: 10.1007/s40899-018-0293-x.

[3] J. T. Saavedra, L. A. Rosales, and O. C. Saavedra, “Modelación de aguas subterráneas del Valle de Cochabamba utilizando Modflow,” Investig. Amp Desarro., vol. 20, no. 1, pp. 81–88, 2020.

[4] “Sólo 2 de 11 pozos perforados hace más de un año funcionan en el sur | Los Tiempos.” Accessed: Jun. 25, 2025. [Online]. Available: https://www.lostiempos.com/actualidad/cochabamba/20171114/solo-2-11-pozos-perforados-hace-mas-ano-funcionan-sur

[5] Stockholm Environment Institute US Center, “Formulación y Actualización del Plan Director de la Cuenca del Río Rocha, Bajo un Enfoque de Adaptación al Cambio Climático: Resumen Ejecutivo (Contrato de Servicio de Consultoría - 01/2018). Presentado a Proyecto Piloto de Resiliencia Climática-PPCR.” Aug. 2019.

[6] A, Durán, “Aguas subterráneas: Investigación aplicada en el abanico aluvial de la cuencia del río Sichez (Groundwater: Applied research in the alluvial fan of the Sichez River watershed).” Talleres Gráficos Kipus, Cochabamba, 2018.

[7] J. S. Famiglietti, “The global groundwater crisis,” Nat. Clim. Change, vol. 4, no. 11, pp. 945–948, Nov. 2014, doi: 10.1038/nclimate2425.

[8] L. F. Konikow and E. Kendy, “Groundwater depletion: A global problem,” Hydrogeol. J., vol. 13, no. 1, pp. 317–320, Mar. 2005, doi: 10.1007/s10040-004-0411-8.

[9] B. López, L. Rosales, O. Saavedra, B. López, L. Rosales, and O. Saavedra, “Modelación hidrogeológica en el Valle Central de Cochabamba-Bolivia,” Investig. Amp Desarro., vol. 23, no. 1, pp. 23–39, 2023, doi: 10.23881/idupbo.023.1-2i.

[10] R. Escalera Vásquez and M. Ormachea Muñoz, “Hidroquímica de la presencia natural de arsénico en aguas subterráneas de áreas suburbanas de Cochabamba-Bolivia y evaluación de la viabilidad técnica de proces de remoción,” Investig. Amp Desarro., vol. 1, no. 17, pp. 27–41, 2017.

[11] A. Adriazola Muriel et al., “Evaluación de la calidad del agua de consumo humano en el municipio de Vinto-Cochabamba-Bolivia,” Rev. Digit. Novasinergia, vol. 7, no. 2, pp. 6–17, Dec. 2024, doi: 10.37135/ns.01.14.01.

[12] M. Rathinasamy, S. Chandramouli, K. B. V. N. Phanindra, and U. Mahesh, Eds., Water Resources and Environmental Engineering II: Climate and Environment. Singapore: Springer Singapore, 2019. doi: 10.1007/978-981-13-2038-5.

[13] Autoridad de Fiscalización y Control Social de Agua Potable y Saneamiento Básico, “Diagnóstico de la calidad del agua subterránea en áreas periurbanas de Cochabamba,” AAPS, Cochabamba, Bolivia, 2020.

[14] P. J. C. Choque, “Modelación Hidrogeológica en el Valle Bajo de Cochabamba, Bolivia,” Universidad Privada Boliviana, Cochabamba, Bolivia, 2024.

[15] APHA, AWWA, and WEF, Standard Methods for Examination of Water and Wastewater, 22nd ed. Washington: American Public Health Association, 2012.

[16] Ministerio de Medio Ambiente y Agua (MMAyA) and Viceministerio de Agua Potable y Saneamiento Básico (VAPSB), Compendio Normativo sobre Calidad de Agua para Consumo Humano NB 512 - Reglamento NB 512 - NB 495 - NB 496, La Paz-Bolivia., 2018.

[17] A. M. Piper, “A graphic procedure in the geochemical interpretation of water‐analyses,” Eos Trans. Am. Geophys. Union, vol. 25, no. 6, pp. 914–928, Jun. 1944, doi: 10.1029/TR025i006p00914.

[18] A. D. Sutadian, N. Muttil, A. G. Yilmaz, and B. J. C. Perera, “Development of river water quality indices-a review,” Environ. Monit. Assess., vol. 188, no. 1, p. 58, Jan. 2016, doi: 10.1007/s10661-015-5050-0.

[19] CETESB - Companhia Ambiental do Estado de São Paulo, “Qualidade das águas interiores no estado de Sao Paulo,” São Paulo, 2020.

[20] I. Paun, L. Cruceru, F. L. Chiriac, M. Niculescu, G. Vasile, and N. Marin, “Water Quality Indices - Methods for evaluating the quality of drinking water,” pp. 395–402, Oct. 2016, doi: 10.21698/simi.2016.0055.

[21] J.C. Davis, Statistics and Data Analysis in Geology, Third edition. Wiley, 2002.

[22] M. J. Reed and R. H. Marine, “Quality control of chemical and isotopic analyses of geothermal water samples,” presented at the Sixteenth Workshop on Geothermal Reservoir Engineering, Standfor University, Standford, California, 1991.

[23] J. D. Hem, “Study and interpretation of the chemical characteristics of natural water,” U.S. Geological Survey, 2254, 1985. doi: 10.3133/wsp2254.

Published

2025-07-31

Issue

Section

Ingenierías

How to Cite

Echeverría, I., Mamani, O., & Saavedra, O. (2025). HYDROGEOCHEMICAL CHARACTERIZATION AND GROUNDWATER QUALITY INDEX IN THE LOWER VALLEY OF COCHABAMBA, BOLIVIA. Revista Investigación & Desarrollo, 25(1), 119-132. https://doi.org/10.23881/idupbo.025.1-10i