ADVANCES AND CHALLENGES OF DECENTRALIZED WASTEWATER TREATMENT IN LATIN AMERICA: A SYSTEMATIC REVIEW 2013–2024

Authors

DOI:

https://doi.org/10.23881/idupbo.025.1-1i

Keywords:

Decentralized treatment, Wastewater, Latin America, Systematic review

Abstract

This study presents a systematic review of 57 scientific publications from 2013 to 2024 focused on Decentralized Wastewater Treatment Systems (DEWATS) in Latin America. The objective is to identify the most commonly used technologies and analyze the challenges and opportunities these solutions face in urban, peri-urban, and rural contexts. The findings show that decentralized systems constitute an effective and adaptable alternative to centralized systems, especially in communities with technical, economic, or geographic limitations. Key advantages include low investment and operation costs, technological simplicity, high efficiency in removing organic matter and suspended solids, and strong potential for valuable resource recovery (water, nutrients, and energy). However, significant challenges were also identified, such as design and implementation deficiencies, lack of specific regulatory frameworks, and limited social acceptance in some contexts. Opportunities are linked to their contribution to sustainability, water security, climate change adaptation, and the promotion of circular economies at the local level. The study concludes that decentralized wastewater treatment systems, particularly constructed wetlands, offer a viable pathway toward universal access to sanitation in the region. To achieve scalability, it is essential to strengthen regulatory frameworks, provide technical training, foster community participation, and ensure institutional support that enables their integration into public water and sanitation policies.

Downloads

Download data is not yet available.

Author Biographies

  • Cecilia Saldías, Universidad Privada Boliviana
    Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA)
  • Marian Rodríguez, Universidad Privada Boliviana
    Facultad de Ingenierías y Arquitectura (FIA)

References

[1] United Nations, Department of Economic and Social Affairs, Population Division, World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations, 2019.

[2] UNICEF – OMS, Progresos en materia de agua para consumo, saneamiento e higiene en América Latina y el Caribe 2000–2020: Cinco años después de la adopción de los ODS. Nueva York: UNICEF y Organización Mundial de la Salud, 2020.

[3] A. Noyola, J. M. Morgan-Sagastume, and L. P. Güereca, Selección de tecnologías para el tratamiento de aguas residuales municipales: Guía de apoyo para ciudades pequeñas y medianas. México: Instituto de Ingeniería, UNAM, 2013.

[4] J. De Anda Sánchez, “Saneamiento descentralizado y reutilización sustentable de las aguas residuales municipales en México,” Sociedad y Ambiente, no. 14, pp. 119–143, 2017. [Online]. Available: https://doi.org/10.31840/sya.v0i14.1770

[5] S. Estévez, S. González-García, G. Feijoo, and M. T. Moreira, “How decentralized treatment can contribute to the symbiosis between environmental protection and resource recovery,” Science of the Total Environment, vol. 812, p. 152446, 2022. doi: 10.1016/j.scitotenv.2021.152446.

[6] D. Milićević, M. Milićević, and R. Trajković, “Decentralized wastewater treatment – A sustainable solution for protecting water resources from pollution,” Journal of the Faculty of Civil Engineering and Architecture, vol. 39, pp. 35–46, 2024. doi: 10.62683/ZRGAF39.35-46.

[7] A. G. Capodaglio, A. Callegari, D. Cecconet, and D. Molognoni, “Sustainability of decentralized wastewater treatment technologies,” Water Practice and Technology, vol. 12, no. 2, pp. 463–477, 2017. doi: 10.2166/wpt.2017.055.

[8] M. M. Ferreira, F. A. Fiore, A. Saron, y G. H. R. da Silva, "Systematic review of the last 20 years of research on decentralized domestic wastewater treatment in Brazil: state of the art and potentials," Water Science & Technology, vol. 84, no. 12, pp. 3469–3483, 2021, doi: 10.2166/wst.2021.487.

[9] H. Muzioreva, T. Gumbo, N. Kavishe, T. Moyo, and I. Musonda, “Decentralized wastewater system practices in developing countries: A systematic review,” Utilities Policy, vol. 79, p. 101442, 2022. doi: 10.1016/j.jup.2022.101442.

[10] CEPAL, Panorama urbano de América Latina y el Caribe, Comisión Económica para América Latina y el Caribe, 2021.

[11] UN-Habitat, World Cities Report 2022: Envisaging the Future of Cities, United Nations Human Settlements Programme, 2022.

[12] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting y D. Moher, “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, vol. 372, p. n71, 29 mar. 2021, doi: 10.1136/bmj.n71

[13] M. Starkl, I. Bisschops, L. Essl, E. López, J. L. Martínez, D. Murillo, and T. A. Nanninga, "Opportunities and constraints for resource efficient environmental management in rapidly developing urban areas: The example of Mexico City," Environmental Impact Assessment Review, vol. 45, pp. 66–77, 2014. doi: 10.1016/j.eiar.2013.12.004

[14] R. Russell, "Waste not, want not? Evaluating the urban sustainability implications of centralized versus decentralized wastewater treatment in Tijuana, Mexico," Journal of Environmental Management, vol. 86, no. 1, pp. 142–152, 2008. doi: 10.1016/j.jenvman.2006.12.031

[15] A. S. Méndez-Mendoza, R. Bello-Mendoza, D. Herrera-López, G. Mejía-González, and A. Calixto-Romo, “Performance of constructed wetlands with ornamental plants in the treatment of domestic wastewater under the tropical climate of South Mexico,” Water Science and Technology, vol. 79, no. 2, pp. 309–319, 2019. doi: 10.2166/wst.2019.016

[16] A. I. Machado, M. Beretta, R. Fragoso, and E. Duarte, “Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil,” Journal of Environmental Management, vol. 187, pp. 560–570, 2017. doi: 10.1016/j.jenvman.2016.11.015

[17] H. A. Casierra-Martínez, J. C. Charris-Olmos, A. Caselles-Osorio, and A. E. Parody-Muñoz, “Organic matter and nutrients removal in tropical constructed wetlands using Cyperus ligularis (Cyperaceae) and Echinocloa colona (Poaceae),” Ecological Engineering, vol. 133, pp. 10–19, 2019. doi: 10.1016/j.ecoleng.2019.04.009

[18] C. Matovelle, M. Quinteros y S. A. Ochoa-García, “Performance of Equisetum spp and Zantedeschia aethiopica on the evaluation of artificial wetlands as an alternative for wastewater treatment in rural areas of the Ecuadorian Andes,” Current Research in Environmental Sustainability, vol. 7, no. 1, p. 100243, 2025, doi: 10.1016/j.crsust.2024.100243.

[19] N. DelaPaz-Ruíz, A. Ellen-Wien, M. Farnaghi, y R. Zurita-Milla, “Modeling spatiotemporal domestic wastewater variability: Implications for measuring treatment efficiency,” J. Environ. Manage., vol. 351, p. 119680, 2024, doi:10.1016/j.jenvman.2023.119680.

[20] J. L. Marín-Muñiz, L. C. Sandoval Herazo, M. C. López-Méndez, M. Sandoval-Herazo, R. A. Meléndez-Armenta, H. R. González-Moreno y S. Zamora, “Treatment wetlands in Mexico for control of wastewater contaminants: A review of experiences during the last twenty-two years,”, Processes, vol. 11, no. 359, pp. 2-18, 2023, doi.org/10.3390/pr11020359.

[21] S. Varma Sinha, E. P. Argyilan y M. P. S. Krekeler, “An environmental investigation of the mineralogical, geotechnical, hydrogeologic and botanical properties of subsurface flow constructed wetlands in Akumal Mexico,” Environ. Earth Sci., vol. 73, no. 5, pp. 2299–2317, 2014, doi: 10.1007/s12665 014 3577 y.

[22] J. A. da Silva, A. Sarti, y G. H. R. da Silva, “Performances of two pilot decentralized wastewater treatment plants used to treat low-strength wastewater,” Desalination and Water Treatment, vol. 91, pp. 93–100, Oct. 2017. doi: 10.5004/dwt.2017.21526.

[23] H. H. de S. Souza, P. L. Paulo, y M. A. Boncz, “A constructed wetland system for residential greywater reuse: economic feasibility of, and willingness to pay for,” Desalination and Water Treatment, vol. 91, pp. 336–348, Oct. 2017. doi: 10.5004/dwt.2017.21398.

[24] J. L. Marín-Muñiz, I. Zitácuaro-Contreras, G. Ortega-Pineda, A. López-Roldán, M. Vidal-Álvarez, K. E. Martínez-Aguilar, L. M. Álvarez-Hernández, y S. Zamora-Castro, “Phytoremediation performance with ornamental plants in monocultures and polycultures conditions using constructed wetlands technology,” Plants (Basel), vol. 13, no. 7, p. 1051, Apr. 2024. doi: 10.3390/plants13071051.

[25] F. P. da Silva, C. A. Lutterbeck, G. S. Colares, G. A. Oliveira, L. R. Rodrigues, N. Dell’Osbel, A. L. Rodriguez, D. A. Rodriguez López, G. Gehlen, y Ê. L. Machado, “Treatment of university campus wastewaters by anaerobic reactor and multi-stage constructed wetlands,” J. Water Process Eng., vol. 42, p. 102119, Oct. 2021, doi: 10.1016/j.jwpe.2021.102119.

[26] M. Perez Rubi, C. Schiffmann, y J. Hack, “Multidimensional assessment of a Nature-based Solution for decentralized greywater treatment in Costa Rica,” Nature-Based Solutions, vol. 2, 2024, Art. no. 100156. doi: 10.1016/j.nbsj.2024.100156.

[27] J. Santos, S. Rodrigues, M. Magalhães, K. Rodrigues, L. Pereira, y G. Marinho, “A state-of-the-art review (2019–2023) on constructed wetlands for greywater treatment and reuse,” Environmental Challenges, vol. 16, Art. no. 100973, 2024. doi: 10.1016/j.envc.2024.100973.

[28] M. F. Prescott, M. F. Dobbie, and D. Ramirez-Lovering, “Green infrastructure for sanitation in settlements in the Global South: A narrative review of socio-technical systems,” Sustainability, vol. 13, no. 4, p. 2071, Feb. 2021, doi: 10.3390/su13042071.

[29] J. P. Silva, “Greenhouse gas emissions from a pilot-scale small decentralized sewage treatment: anaerobic filter + constructed wetland,” Ingeniería y Competitividad, vol. 18, no. 2, pp. 101–112, 2016.

[30] T. Bisognin Immich, R. C. Medeiros, and S. T. Decezaro, “Feasibility study for the implementation and operation of different types of constructed wetlands for a decentralized wastewater treatment system,” Revista Brasileira de Engenharia Sanitária e Ambiental, vol. 29, no. 5, 2024. doi: 10.1590/S1413-415220240005.

[31] Rodriguez Domínguez, M. A.; Konnerup, D.; Brix, H.; Arias, C. A., “Constructed Wetlands in Latin America and the Caribbean: A Review of Experiences during the Last Decade,” Water, vol. 12, no. 6, art. 1744, Jun. 2020.

[32] M. Arias-Henao, D. Paredes-Cuervo, and P. Torres-Lozada, "Influence of conventional and hybrid septic tank-anaerobic filter configurations on the hydrodynamics and performance of wastewater treatment," Ingeniería e Investigación, vol. 43, no. 2, Art. no. e94617, 2023. doi.org/10.15446/ing.investig.94617

[33] B. de Oliveira Freitas, L. de S. Leite, and L. A. Daniela, "Chlorine and peracetic acid in decentralized wastewater treatment: Disinfection, oxidation and odor control," Process Safety and Environmental Protection, vol. 146, pp. 620–628, 2021. https://doi.org/10.1016/j.psep.2020.11.047

[34] J. A. Cardona, O. C. Segovia, S. Böttger, N. A. Medellin Castillo, L. Cavallo, I. E. Ribeiro, and S. Schlüter, "Reuse-oriented decentralized wastewater and sewage sludge treatment for rural settlements in Brazil: a cost–benefit analysis," Desalination and Water Treatment, vol. 91, pp. 82–92, Oct. 2017, doi: 10.5004/dwt.2017.21421.

Published

2025-08-25

Issue

Section

Ingenierías

How to Cite

Saldías, C., & Rodríguez, M. (2025). ADVANCES AND CHALLENGES OF DECENTRALIZED WASTEWATER TREATMENT IN LATIN AMERICA: A SYSTEMATIC REVIEW 2013–2024. Revista Investigación & Desarrollo, 25(1), 5-20. https://doi.org/10.23881/idupbo.025.1-1i