ANALYSIS OF DIFFERENT PRECIPITATION SOURCES FOR THE DOWNSCALING OF THE MIROC5 MODEL IN THE GUADALQUIVIR BASIN, BOLIVIA

Authors

  • Jhonatan Ureña Universidad Privada Boliviana
  • Oliver Saavedra Universidad Privada Boliviana

DOI:

https://doi.org/10.23881/idupbo.024.2-1i

Keywords:

Precipitation, Remote Sensing, HydroBID, Guadalquivir Basin, GCM-MIROC5 RCP8.8

Abstract

The use of distributed precipitation data in hydrological models is important to reflect the spatial variability of hydrological processes. In this study, the HydroBID tool has been implemented in the Guadalquivir River basin using three precipitation products: i) rainfall stations; ii) GSMaP.v6_Gauge; iii) combined GS product. The latter was generated by combining the satellite-based product and the local network of rain gauges, at the sub-basin level. The hydrological model was also implemented with the precipitation products and the daily flow in the water network was obtained, showing an optimum correlation of 0.99 and efficiency of 0.96 during the period 2000 - 2016 at the sub-basin level. The results simulated with the combined GS product showed better similarity to the observed flows. Subsequently, the K-NN downscaling method was applied to the MIROC5 RCP8.5 global climate model with the precipitation and temperature variables, considering two future horizons of analysis, near (2031-2060) and far future (2061-2090). The results show that temperature shows patterns and behaviors similar to those observed, with average values of 17 and 18°C, and variations of 1.5 and 2.7°C for the near and far future scenarios, respectively. On the other hand, precipitation showed different behaviors in the three products used. The values of the rain gauges and the GS product show a drastic reduction to the observed historical average of precipitation used, with differences of up to 230 mm/year on average. The GSMaP product presented higher precipitation values, approximately 80 mm/year above the average, the modeling results using this precipitation data indicate that the simulated flows present lower values with respect to the observed ones. The observed flows show a maximum average of 40 m3/s in March and a minimum average of 3 m3/s in October. On the other hand, the simulated flows under the effect of climate change show an average maximum flow of 22 m3/s in March and a minimum flow of 3 m3/s in October, indicating a reduction in flow during the rainy season.

Downloads

Download data is not yet available.

Author Biographies

  • Jhonatan Ureña, Universidad Privada Boliviana
    Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA)
  • Oliver Saavedra, Universidad Privada Boliviana
    Facultad de Ingenierías y Arquitectura

References

E. Moges, Y. Demissie, L. Larsen, and F. Yassin, "Review: Sources of Hydrological Model Uncertainties and Advances in Their Analysis," Water, vol. 13, no. 1, p. 28, Dec. 2020, doi: 10.3390/w13010028.

K. J. Beven, Rainfall-Runoff Modelling: The Primer, 2nd ed. Chichester, West Sussex; Hoboken, NJ: Wiley-Blackwell, 2012.

H. Chen, S. Huang, Y. Xu, R. Teegavarapu, Y. Guo, J. Xie, and H. Nie, "Quantitative Assessment of Impact of Climate Change and Human Activities on Streamflow Changes Using an Improved Three-Parameter Monthly Water Balance Model," Remote Sensing, vol. 14, no. 17, p. 4411, Sep. 2022, doi: 10.3390/rs14174411.

P. Darbandsari and P. Coulibaly, "Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada," Journal of Hydrology: Regional Studies, vol. 31, p. 100730, Oct. 2020, doi: 10.1016/j.ejrh.2020.100730.

J. Li, Y. Zhao, P. Bates, J. Neal, S. Tooth, L. Hwaker, and C. Maffei, "Digital Elevation Models for Topographic Characterisation and Flood Flow Modelling along Low-Gradient, Terminal Dryland Rivers: A Comparison of Spaceborne Datasets for the Río Colorado, Bolivia," Journal of Hydrology, vol. 591, p. 125617, Dec. 2020, doi: 10.1016/j.jhydrol.2020.125617.

W. García F., M. Delfín S., M. Ledezma P., and B. Arévalo S., "Integrando métodos de evaluación de riesgos de deslizamientos e inundaciones en cuencas del Tunari y zona de Alto Cochabamba," Acta Nova, vol. 10, pp. 61-95, 2021.

N. A. Achá, O. C. Saavedra, and J. E. Ureña, "Modelación Hidrológica en la Cuenca del Río Rocha Incorporando Lineamientos de Caudal Ecológico," I&D, vol. 22, no. 1, Jul. 2022, doi: 10.23881/idupbo.022.1-5i.

M. Villazon and I. Maldonado, "Hourly Continuous Hydrologic Modelling of the Rocha River Basin," presented at the XIX Congreso Internacional Región II de Ingeniería Sanitaria y Ambiental AIDIS, La Paz, Bolivia, May 2022.

P. K. Paul, Y. Zhang, A. Mishra, N. Panigrahy, and R. Singh, "Comparative Study of Two State-of-the-Art Semi-Distributed Hydrological Models," Water, vol. 11, no. 5, p. 871, Apr. 2019, doi: 10.3390/w11050871.

Ministerio de Medio Ambiente y Agua (MMAyA), Ed., Balance Hídrico Superficial de Bolivia (1980 - 2016): Documento de Difusión. La Paz, Bolivia: Ministerio de Medio Ambiente y Agua, 2018.

F. Moreda, F. Miralles-Wilhelm, and R. Muñoz, "Hydro-BID: Un Sistema Integrado para la Simulación de Impactos del Cambio Climático sobre los Recursos Hídricos. Parte 2," BID, Dec. 2014.

J. Ureña, O. Saavedra, and T. Kubota, "The Development of a Combined Satellite-Based Precipitation Dataset across Bolivia from 2000 to 2015," Remote Sensing, vol. 13, no. 15, p. 2931, Jul. 2021, doi: 10.3390/rs13152931.

R. Knutti and J. Sedláček, "Robustness and Uncertainties in the New CMIP5 Climate Model Projections," Nature Climate Change, vol. 3, no. 4, pp. 369-373, Apr. 2013, doi: 10.1038/nclimate1716.

R. A. Gutierrez, C. Junquas, E. Armijos, A. A. Sörensson, and J.-C. Espinoza, "Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Region," Journal of Geophysical Research: Atmospheres, vol. 129, no. 1, p. e2023JD038618, 2024, doi: https://doi.org/10.1029/2023JD038618.

O. Saavedra and J. Ureña, "Generation of Combined Daily Satellite-Based Precipitation Products over Bolivia," Remote Sensing, vol. 14, no. 17, p. 4195, Aug. 2022, doi: 10.3390/rs14174195.

O. Saavedra, J. Ureña, and M. Perales, "Implementation of HydroBID Model with Satellite-Based Precipitation Products in Guadalquivir Basin, Bolivia," Water, vol. 15, no. 18, p. 3250, Sep. 2023, doi: 10.3390/w15183250.

S. Gangopadhyay, M. Clark, and B. Rajagopalan, "Statistical Downscaling Using K-Nearest Neighbors," Water Resources Research, vol. 41, no. 2, p. 2004WR003444, Feb. 2005, doi: 10.1029/2004WR003444.

A. Moncada, C. F. Pérez, and H. Angarita, "Escenarios de Cambio Climático: Método k-NN," Stockholm Environment Institute, SEI Discussion Brief, 2020. [En línea]. Disponible en: https://www.sei.org/publications/escenarios-de-cambio-climatico-metodo-k-nn/

N. Lima-Quispe, C. Cleoni, W. Rincón, Z. Gutierrez, F. Zubieta, S. Nuñez, J. Iriarte, C. Saldías, D. Purkey, M. Escobar, y H. Angarita, "Delving into the Divisive Waters of River Basin Planning in Bolivia: A Case Study in the Cochabamba Valley," Water, vol. 13, no. 2, p. 190, Jan. 2021, doi: 10.3390/w13020190.

Published

2025-01-10

Issue

Section

Ingenierías

How to Cite

ANALYSIS OF DIFFERENT PRECIPITATION SOURCES FOR THE DOWNSCALING OF THE MIROC5 MODEL IN THE GUADALQUIVIR BASIN, BOLIVIA . (2025). Revista Investigación & Desarrollo, 24(2), 5-14. https://doi.org/10.23881/idupbo.024.2-1i