ANÁLISIS DE LA APLICABILIDAD DE MÉTODOS DE LIMPIEZA DE PANELES FOTOVOLTAICOS PARA SISTEMAS DE GENERACION DISTRIBUIDA EN SUDAMERICA

Autores/as

  • Sergio Llanos Universidad Privada Boliviana
  • Renán Orellana-Lafuente Universidad Privada Boliviana
  • Daniel Felipe Sempértegui-Tapia Universidad Privada Boliviana

DOI:

https://doi.org/10.23881/idupbo.024.1-9i

Palabras clave:

Paneles Fotovoltaicos, Eficiencia, Métodos de Limpieza, Generación Distribuida

Resumen

En la última década, los paneles solares han emergido como una solución clave para mitigar los efectos del calentamiento global y son, por lo general, la primera opción para diversificar la matriz energética en numerosos países. Además, diversos gobiernos de la región están promoviendo la micro-generación para autoconsumo mediante legislación que regula actividades en Sistemas de Generación Distribuida, los cuales tienden a ser mayoritariamente sistemas fotovoltaicos. No obstante, los sistemas fotovoltaicos presentan ciertos desafíos, entre los cuales destaca la reducción significativa de la producción de energía por el calentamiento excesivo de la superficie del panel y por la acumulación de polvo y suciedad. Para mantener la eficiencia de un panel, debe realizarse una limpieza periódica del sistema, lo cual se complica debido a la ubicación de los paneles en sitios de difícil acceso. En este trabajo, se analiza la aplicabilidad de los diversos métodos de limpieza centrándose en el grado de accesibilidad y su posible aplicación en Sistemas de Generación Distribuida en Sudamérica, considerando que es una tecnología emergente en esta región. Este estudio representa el primer paso hacia la propuesta de un diseño de sistema de limpieza de paneles fotovoltaicos que sea técnica y económicamente viable para su uso en Sistemas de Generación Distribuida en Sudamérica a partir de la experiencia boliviana.

Descargas

Los datos de descargas todavía no están disponibles.

Afiliación del autor/a

Sergio Llanos, Universidad Privada Boliviana

Laboratorio de Energías Alternativas (LEA)

Renán Orellana-Lafuente, Universidad Privada Boliviana

Laboratorio de Energías Alternativas (LEA)

Daniel Felipe Sempértegui-Tapia, Universidad Privada Boliviana

Laboratorio de Energías Alternativas (LEA)

Referencias

AETN, “Anuario Estadistico 2022,” 2022. [Online]. Available:https://sawi.aetn.gob.bo/docfly/app/webroot/

uploads/Libro Anuario AETN 2022 - tapas-nramirez-2023-05-09-a.pdf.

D. R. Alcócer-Ayala, Y. Pozo Vallejo, D. F. Sempértegui-Tapia, and R. Orellana Lafuente, “Caso De Estudio: Impacto De La Generación Distribuida En Redes Eléctricas De Distribución,” Investig. Desarro., vol. 23, no. 1, pp. 57–66, 2023, doi: 10.23881/idupbo.023.1-4i.

L. Chabla-Auqui, D. Ochoa-Correa, E. Villa-Ávila, and P. Astudillo-Salinas, “Distributed Generation Applied to Residential Self-Supply in South America in the Decade 2013–2023: A Literature Review,” Energies, vol. 16, no. 17, 2023, doi: 10.3390/en16176207.

J. Siecker, K. Kusakana, and B. P. Numbi, “A review of solar photovoltaic systems cooling technologies,” Renew. Sustain. Energy Rev., vol. 79, pp. 192–203, 2017, doi: https://doi.org/10.1016/j.rser.2017.05.053.

A. Ullah, A. Amin, T. Haider, M. Saleem, and N. Z. Butt, “Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan,” Renew. Energy, vol. 150, pp. 456–468, 2020, doi: https://doi.org/10.1016/j.renene.2019.12.090.

L. Wan, L. Zhao, W. Xu, F. Guo, and X. Jiang, “Dust deposition on the photovoltaic panel: A comprehensive survey on mechanisms, effects, mathematical modeling, cleaning methods, and monitoring systems,” Sol. Energy, vol. 268, no. January, p. 112300, 2024, doi: 10.1016/j.solener.2023.112300.

H. A. Kazem, M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian, “A review of dust accumulation and cleaning methods for solar photovoltaic systems,” J. Clean. Prod., vol. 276, p. 123187, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.123187.

P. Vasiljev, S. Borodinas, R. Bareikis, and A. Struckas, “Ultrasonic system for solar panel cleaning,” Sensors Actuators, A Phys., vol. 200, no. November 2018, pp. 74–78, 2013, doi: 10.1016/j.sna.2013.01.009.

M. Dida, S. Boughali, D. Bechki, and H. Bouguettaia, “Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment,” Renew. Sustain. Energy Rev., vol. 124, p. 109787, 2020, doi: https://doi.org/10.1016/j.rser.2020.109787.

W. J. Jamil, H. Abdul Rahman, S. Shaari, and Z. Salam, “Performance degradation of photovoltaic power system: Review on mitigation methods,” Renew. Sustain. Energy Rev., vol. 67, pp. 876–891, 2017, doi: https://doi.org/10.1016/j.rser.2016.09.072.

H. Abuzaid, M. Awad, and A. Shamayleh, “Impact of dust accumulation on photovoltaic panels: a review paper,” Int. J. Sustain. Eng., vol. 15, no. 1, pp. 266–287, 2022, doi: 10.1080/19397038.2022.2140222.

L. L. Kazmerski et al., “Fundamental studies of the adhesion of dust to PV module chemical and physical relationships at the microscale,” in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015, pp. 1–7, doi: 10.1109/PVSC.2015.7356135.

H. Lu and C. Zheng, “Comparison of Dust Deposition Reduction Performance by Super-Hydrophobic and Super-Hydrophilic Coatings for Solar PV Cells,” Coatings, vol. 12, no. 4. 2022, doi: 10.3390/coatings12040502.

W. Zhao, Y. Lv, Q. Zhou, and W. Yan, “Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance,” Energy, vol. 233, p. 121240, 2021, doi: https://doi.org/10.1016/j.energy.2021.121240.

W. Zhao and H. Lu, “Self-Cleaning Performance of Super-Hydrophilic Coatings for Dust Deposition Reduction on Solar Photovoltaic Cells,” Coatings, vol. 11, no. 9. 2021, doi: 10.3390/coatings11091059.

X. Wang, J. P. Nshimiyimana, D. Huang, X. Diao, and N. Zhang, “Durable superhydrophilic and antireflective coating for high-performance anti-dust photovoltaic systems,” Appl. Nanosci., vol. 11, no. 3, pp. 875–885, 2021, doi: 10.1007/s13204-020-01643-0.

H. Lu, R.-R. Cai, L.-Z. Zhang, L. Lu, and L. Zhang, “Experimental investigation on deposition reduction of different types of dust on solar PV cells by self-cleaning coatings,” Sol. Energy, vol. 206, pp. 365–373, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:225478387.

L. Zhang, A. Pan, R. Cai, and H. Lu, “Indoor experiments of dust deposition reduction on solar cell covering glass by transparent super-hydrophobic coating with different tilt angles,” Sol. Energy, vol. 188, pp. 1146–1155, 2019, doi: https://doi.org/10.1016/j.solener.2019.07.026.

H. Salehi, A. Eshaghi, M. Rezazadeh, and H. Zabolian, “Antireflective and anti-dust modified silica based thin film on solar cell cover glass,” J. Alloys Compd., vol. 892, p. 162228, 2022, doi: https://doi.org/10.1016/j.jallcom.2021.162228.

B. S. Yilbas, A. A. Abubakar, H. Al-Qahtani, A. S. Mohammed, and A. Al-Sharafi, “A novel method for dust mitigation from PV cell surfaces,” Sol. Energy, vol. 225, pp. 708–717, 2021, doi: https://doi.org/10.1016/j.solener.2021.07.068.

P. Wang, M. Kong, L. Wang, and L. Ni, “The Effect of the Superhydrophobic Film on the Generation Efficiency of Photovoltaic Modules Affected by Salt-Containing Dust Deposition,” IEEE J. Photovoltaics, vol. 9, no. 6, pp. 1727–1732, 2019, doi: 10.1109/JPHOTOV.2019.2930909.

T. Sorndach, N. Pudchuen, and P. Srisungsitthisunti, Rooftop Solar Panel Cleaning Robot Using Omni Wheels. 2018.

K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Influence of cleaning using water and surfactants on the performance of photovoltaic panels,” Energy Convers. Manag., vol. 68, pp. 266–272, 2013, doi: https://doi.org/10.1016/j.enconman.2013.01.022.

F. Ekinci, A. Yavuzdeğer, H. Nazlıgül, B. Esenboğa, B. Doğru Mert, and T. Demirdelen, “Experimental investigation on solar PV panel dust cleaning with solution method,” Sol. Energy, vol. 237, pp. 1–10, 2022, doi: https://doi.org/10.1016/j.solener.2022.03.066.

H. A. Kazem and M. T. Chaichan, “The effect of dust accumulation and cleaning methods on PV panels’ outcomes based on an experimental study of six locations in Northern Oman,” Sol. Energy, vol. 187, pp. 30–38, 2019, doi: https://doi.org/10.1016/j.solener.2019.05.036.

A. S. Alghamdi, A. S. Bahaj, L. S. Blunden, and Y. Wu, “Dust Removal from Solar PV Modules by Automated Cleaning Systems,” Energies, vol. 12, no. 15. 2019, doi: 10.3390/en12152923.

D. Greig, “Heliotex Automatic solar panel cleaning system,” 2009.

Karcher, “Innovative cleaning solutions for photovoltaic and solar panels,” 2024. https://www.kaercher.com/us/commercial/pressure-washers/isolar-clean-solar-modules-effectively-and-increase-electricity-production.html.

N. Sugiartha, I. G. N. Ardana, I. M. Sugina, I. B. G. Widiantara, I. N. Suparta, and I. K. Adi, “Preliminary design and test of a water spray solar panel cleaning system,” J. Phys. Conf. Ser., vol. 1450, no. 1, pp. 0–7, 2020, doi: 10.1088/1742-6596/1450/1/012108.

X. Du, F. Jiang, E. Liu, C. Wu, and F. H. Ghorbel, “Turbulent airflow dust particle removal from solar panel surface: Analysis and experiment,” J. Aerosol Sci., vol. 130, pp. 32–44, 2019, doi: https://doi.org/10.1016/j.jaerosci.2019.01.005.

D. Li, M. King, M. Dooner, S. Guo, and J. Wang, “Study on the cleaning and cooling of solar photovoltaic panels using compressed airflow,” Sol. Energy, vol. 221, pp. 433–444, 2021, doi: https://doi.org/10.1016/j.solener.2021.04.050.

A. Assi, A. Hassan, M. Al-Shamisi, and H. Hejase, “Removal of air blown dust from photovoltaic arrays using forced air flow of return air from air conditioning systems,” in 2012 International Conference on Renewable Energies for Developing Countries (REDEC), 2012, pp. 1–5, doi: 10.1109/REDEC.2012.6416699.

X. Lu, Q. Zhang, and J. Hu, “A linear piezoelectric actuator based solar panel cleaning system,” Energy, vol. 60, pp. 401–406, 2013, doi: https://doi.org/10.1016/j.energy.2013.07.058.

N. Sarode, P. Ghugal, S. Yadav, S. Dantule, and P. Nandankar, “A comprehensive review on solar panel cleaning robot technologies,” AIP Conf. Proc., vol. 2753, no. 1, p. 20018, Apr. 2023, doi: 10.1063/5.0127800.

N. Hashim, M. Abdulrazaq Alshekhly, R. Selvarajan, S. Al-Zubaidi, and S. Mohammed Sarhan, Study on Solar Panel Cleaning Robot. 2019.

D. S. Cleaners, “Drone Sky Cleaners,” 2024. https://www.droneskycleaners.com/.

Z. Brydon, K. Lee, and A. Hassani, “An Automated Framework for Drone-based Solar Panel Soiling Detection,” 2023 8th Int. Conf. Robot. Autom. Eng., pp. 203–210, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:268384494.

Z. Wang, P. Zheng, B. Bahadir Kocer, and M. Kovac, “Drone-Based Solar Cell Inspection With Autonomous Deep Learning,” in Infrastructure Robotics, 2024, pp. 337–365.

A. G. Lupu, V. M. Homutescu, D. T. Balanescu, and A. Popescu, “A review of solar photovoltaic systems cooling technologies,” IOP Conf. Ser. Mater. Sci. Eng., vol. 444, no. 8, 2018, doi: 10.1088/1757-899X/444/8/082016.

Archivos adicionales

Publicado

31-07-2024

Cómo citar

Llanos, S., Orellana-Lafuente, R., & Sempértegui-Tapia, D. F. (2024). ANÁLISIS DE LA APLICABILIDAD DE MÉTODOS DE LIMPIEZA DE PANELES FOTOVOLTAICOS PARA SISTEMAS DE GENERACION DISTRIBUIDA EN SUDAMERICA . Revista Investigación &Amp; Desarrollo, 24(1), 107–120. https://doi.org/10.23881/idupbo.024.1-9i

Número

Sección

Ingenierías