CARACTERIZACIÓN MICROESTRUCTURAL DE MEZCLAS DESHIDRATADAS DE POLISACÁRIDOS-PROTEÍNAS POR MICROSCOPIA DE FUERZA ATÓMICA
Keywords:
Separación de Fases, Segregación de Fases, Películas Deshidratadas, Microscopia de Fuerza Atómica, -Lactoglobulina, Amilopectina, PatatinaAbstract
Las microestructuras de mezclas de amilosa – β-lactoglobulina (AM-βlg) y amilopectina - patatina (AP-PA), formadas a partir de la deshidratación de soluciones de diferentes concentraciones y diferentes relaciones polisacárido:proteína, se estudiaron usando Microscopía de Fuerza Atómica (Atomic Force Microscopy – AFM). Los resultados se confirmaron por Microscopia de Transmisión Electrónica (Transmission Electron Microscopy – TEM). Los compuestos puros mostraron estructuras lisas, aunque entre los polisacáridos, la amilosa tuvo una estructura más rugosa, y entre las proteínas la patatina. Las proteínas naturales mostraron diferentes estructuras en comparación con las proteínas tratadas térmicamente, que mostraron estructuras rugosas, resultado de la agregación de sus moléculas. Los sistemas polisacáridos-proteínas mostraron estructuras que no sufrieron una segregación de fases a relaciones polisacárido:proteína igual a 1:1 para la AM:βlg y mayores a 1:1 para AP:PA, y que sufrieron una segregación de fases a relaciones menores a 1:1 para AM:β-lg e iguales o mayores a 1:1 para AP:PA. Las muestras con segregación de fases presentaron regiones ricas en polisacárido y regiones ricas en proteína. Después del tratamiento térmico las muestras que no mostraron una segregación de fases presentaron algún grado de segregación, el grado de segregación de fases estuvo en función de la concentración de proteína.Downloads
References
V. B. Tolstoguzov. “Functional Properties of Protein-Polysaccharide Mixtures.” Functional Properties of Food Macromoleculesed. J. R. Mitchell and D. A. Ledward. London, UK: Elsevier, 1986, Chapter 9, pp. 385-415.
V. Ya. Grinberg and V. B. Tolstoguzov. “Thermodynamic incompatibility of proteins and polysaccharides in solutions.” Food Hydrocolloids, vol. 11, no. 2, 1997, pp. 145-158.
E. Dickinson. “Protein-Polysaccharide Interactions in Food Colloids.” In Food Colloids and Polymers: Stability and Mechanical Properties. E. Dickinson and P. Walstra. Cambridge, UK: Royal Society of Chemistry, 1993, pp. 77-93.
C. C. Quiroga and B. Bergenståhl. “Phase segregation of amylopectin and β-lactoglobulin in aqueous system.” Carbohydrate Polymers, vol. 72, 2008, pp. 151-159.
C. C. Quiroga and B. Bergenståhl. “Characterization of the Microstructure of Phase Segregated Amylopectin and -Lactoglobulin Dry Mixtures.” Food Biophysics, vol. 2, 2007, pp. 172-182.
C. C. Quiroga and B. Bergenståhl. “Effect of Heat Treatment on the Phase Segregation of Amylopectin and -lactoglobulin Aqueous System.” Submitted for publication.
D. French. “Organization of Starch Granules.” In Starch: Chemistry and Technology. R. L. Whistler, J. N. BeMiller and E.F. Paschall. Florida, USA: Academic Press, Inc., 1984, Chapter VII, pp. 183-247.
J. Swinkels. “Composition and Properties of Commercial Native Starches.” Starch/Stärke, vol. 37, no. 1, 1985, pp. 1-5.
H. F. Zobel. “Molecules to Granules: A Comprehensive Starch Review.” Starch/Stärke, vol. 40, no. 2, 1988, pp. 44-50.
Fox, P.F. (2003). Milk Protein: General and Historical Aspects. In Fox, P. F. and McSweeney, P. L. H. eds. Advanced Dairy Chemistry, Vol. I: Proteins. New York, USA: Kluwer Academic/Plenum, 2003, Chapter 1, pp. 1-48.
A. M. Pots et al. “Isolation and Characterization of Patatin Isoforms.” Journal of Agricultural and Food Chemistry, vol. 47, no. 11, pp. 4587-4592, 1999a.
A. M. Pots et al. “Thermal aggregation of patatin studied in situ.” Journal of agricultural and food chemistry, vol. 47, no. 11, pp. 4600-4605, 1999b.
J. R. Bohac. “A modified method to purify patatin from potato tubers.” Journal of Agricultural and Food Chemistry, vol. 39, no. 8, pp. 1411-15, 1991.
D. Racusen and M. Foote. “A major soluble glycoprotein of potato tubers.” Journal of Food Biochemistry, vol. 4, no. 1, pp. 43-52, 1980.
M. Langton and A.-M. Hermansson. “Fine-stranded and particulate gels of -lactoglobulin and whey protein at varying pH,” in Food Hydrocolloids, vol. 5, no. 6, 1992, pp. 523-539.
J. –P. Thiéry. “Demonstration of polysaccharides in thin sections by electron microscopy.” Journal de Microscopie, vol. 6, no. 7, pp. 987-1018, 1967.
Å. Rindlav-Westling. “Crystallinity and Morphology of Starch Polymers in Films.” Doctoral Thesis - Chalmers University of Technology, 2002, pp. 19 – 22.
J-L. Putaux et al. “Network formation in dilute amylose and amylopectin studied by TEM,” Macromolecules, vol. 33, no. 17, pp. 6416-6422, 2000.
M. J. Gidley and P. V. Bulpin. “Aggregation of amylose in aqueous systems: the effect of chain length on phase behavior and aggregation kinetics.” Macromolecules, vol. 22, no. 1, pp. 341-346, 1989.
M. J. Miles et al. “Gelation of amylose.” Carbohydrate Research, vol. 135, no. 2, pp. 257-269, 1985.
N. H. Thomson et al. “Real-time imaging of enzymatic degradation of starch granules by atomic force microscopy.” Journal of Vacuum Science and Technology, B: Microelectronics and Nanometer Structures, vol. 12, no. 3, pp. 1565-1568, 1994.
P. M. Baldwin et al. “High Resolution Imaging of Starch Granule Surfaces by Atomic Force Microscopy.” Journal of Cereal Science, vol. 27, pp. 255-265, 1998.
C. Le Bon et al. Growth and structure of aggregates of heat-denatured -lactoglobulin.” International Journal of Food Science and Technology, vol. 34, no. 5/6, pp. 451-465, 1999.
A. M. Vallêra et al. “The structure of amylose gels.” Journal of Physics: Condensed Matter, vol. 6, no. 2, pp. 311-320, 1994.
T. Nicolai et al. “Iso-scattering points during heat-induced aggregation and gelation of globular proteins indicating micro-phase separation.” Europhysics Letters, vol. 73, no. 2, pp. 299-305, 2006.
M. T. Kalichevsky and S. G. Ring. “Incompatibility of amylose and amylopectin in aqueous solution.” Carbohydrate Research, vol. 162, no. 2, pp. 323-328, 1987.
Published
How to Cite
Issue
Section
License
Creative Commons Attribution-Noncommercial-Share Alike
CC BY-NC-SA
This license lets others remix, tweak, and build upon your work for non-commercial purposes, as long as they credit the author(s) and license their new creations under the identical terms.
The authors can enter additional separate contract agreements for non-exclusive distribution of the version of the article published in the magazine (for instance, they may publish it in an institutional repository or a book), subject to an acknowledgement of its initial publication in this magazine.