3D PRINTING IN THE CREATION OF STRUCTURES CUBESATS VS. CONVENTIONAL MATERIALS

Authors

  • Jorge Soliz Universidad Privada Boliviana
  • Mishel Cuiza Universidad Privada Boliviana

DOI:

https://doi.org/10.23881/idupbo.024.1-10i

Keywords:

Cubesat, Structural Design, 3D Printing

Abstract

The creation of the CubeSat marked the beginning of a growing interest in space technology exploration. CubeSat is a standardization aimed at reducing satellite production costs and lead times, enabling access to space for universities or research groups with scientific resources to experiment with new technologies and facilitate aerospace research. Over the years, key aspects such as component miniaturization, propulsion systems, energy efficiency, and communication have been improved. However, challenges persist in space robustness, costs, and operational longevity, making the proper selection of materials essential as they must withstand the extreme conditions of space. 3D printing has gained prominence in the space industry, although its potential in aerospace applications has been explored, its adoption in CubeSats still faces challenges. Through a systematic literature review, the impact of 3D printing on CubeSat structures compared to conventional materials was investigated, analyzing their key properties against space conditions. The results highlighted the flexibility and customization offered by three-dimensional manufacturing, but also underscored the advantages of conventional materials in mechanical strength. Additive manufacturing is transforming the space industry, and the choice between 3D printing and classical materials will depend on the needs of the space mission.

Downloads

Download data is not yet available.

Author Biographies

Jorge Soliz, Universidad Privada Boliviana

Ingeniería Electrónica y Telecomunicaciones

Mishel Cuiza, Universidad Privada Boliviana

Ingeniería Electrónica y Telecomunicaciones

References

N. CubeSat Launch Initiative, “CubeSat 101: Basic Concepts and Processes for First-Time CubeSat Developers”.

M. L. Camacho, “Universidad Privada Boliviana, Facultad de Ingeniería y Arquitectura, Carrera de Ingeniería Electrónica y Telecomunicaciones, Diseño e Implementación de la Estación Terrena UPB para Satélites Académicos Cubesats Trabajo Final de Grado”, 2022.

Y. Bohorquez, “Diseño Conceptual y Preliminar de un Cubesat de Bajo Costo”, 2018.

W.-P. Air Force Base, “Design and Testing of an Additively Manufactured Cubesat Structural Bus Air Force Institute Of Technology”.

P. Esp Lic Abelaira, A. T. SCD Karner, C. Daniel, und J. F. Kennedy, “CubeESatS: Aproximaciones, desafíos y utilidades ‚La dificultad es una excusa que la historia nunca acepta”, Zugegriffen: 26. August 2023. [Online]. Verfügbar unter: www.ffi.no/publikasjoner/arkiv/milspace2-bros.spectrum-monitoring-dual-satellite-system

M. Napoli und P. Papadopoulos, “The Use of Additive Manufacturing Technologies for the Design and Development of a Cubesat A project present to Master of Science in Aerospace Engineering”, 2013.

“CubeSats y el desarrollo de la impresión 3D basada en el espacio”. Zugegriffen: 26. August 2023. [Online]. Verfügbar unter: https://ts2.space/es/cubesats-y-el-desarrollo-de-la-impresion-3d-basada-en-el-espacio/

Z. Chen und N. Zosimovych, “Mission Capability Assessment of 3D Printing Cubesats”, doi: 10.1088/1757-899X/608/1/012025.

“La Agencia Especial Europea da a conocer los CubeSat, satélites 3D en miniatura - 3Dnatives”. Zugegriffen: 26. August 2023. [Online]. Verfügbar unter: https://www.3dnatives.com/es/cubesat-satelites-3d-250520172/

Simon Lee, Amy Hutputanasin, Armen Toorian, Wenschel Lan, und Riki Munakata, “CubeSat Design Specification Rev. 12 The CubeSat Program, Cal Poly SLO CubeSat Design Specification (CDS) Document Classification X Public Domain ITAR Controlled Internal Only CubeSat Design Specification Rev. 12 The CubeSat Program, Cal Poly SLO Change History Log Effective Date Revision Author Description of Changes”.

E. F. Cruz Martínez, V. Martínez Calzada, und A. Saldaña Heredia, “Diseño Estructural de un Nanosatélite Tipo Cubesat”, Ingeniería: Ciencia, Tecnología e Innovación, Bd. 9, Nr. 1, S. 45–56, Juni 2022, doi: 10.26495/icti.v9i1.2165.

“Small Satellites, Big Impact: Sustainability in the Space Economy - New Space Economy”. Zugegriffen: 31. August 2023. [Online]. Verfügbar unter: https://newspaceeconomy.ca/2023/04/14/small-satellites-big-impact-sustainability-in-the-space-industry/

Gauthier Pierlot, “Oufti-1 : flight system configuration and structural analysis.”, 2009.

R. Nugent, R. Munakata, A. Chin, R. Coelho, und J. Puig-Suari, “The CubeSat: The picosatellite standard for research and education”, Space 2008 Conference, 2008, doi: 10.2514/6.2008-7734.

M. Cihan, A. Cetin, M. O. Kaya, und G. Inalhan, “Design and analysis of an innovative modular cubesat structure for ITU-pSAT II”, in RAST 2011 - Proceedings of 5th International Conference on Recent Advances in Space Technologies, 2011, S. 494–499. doi: 10.1109/RAST.2011.5966885.

“Vista de celdas fotovoltaicas de alta eficiencia y sistema de paneles solares del CubeSat Colombia 1”. Zugegriffen: 31. August 2023. [Online]. Verfügbar unter:

https://revistas.udistrital.edu.co/index.php/REDES/article/view/6381/7900

“Universidad del Valle de Guatemala, Facultad de Ingeniería Diseño y fabricación de una estructura para un CubeSat 1U”.

“Todo lo que siempre quisiste saber sobre la estructura de un CubeSat”. Zugegriffen: 31. August 2023. [Online]. Verfügbar unter: https://haciaelespacio.aem.gob.mx/revistadigital/articul.php?interior=1348

“Análisis de resistencia estructural en el diseño de un nanosatélite CubeSat”. Zugegriffen: 30. August 2023. [Online]. Verfügbar unter: https://www.redalyc.org/journal/614/61459623007/html/

“Impresión 3D Aeroespacial | Dassault Systèmes”. Zugegriffen: 31. August 2023. [Online]. Verfügbar unter: https://www.3ds.com/es/make/solutions/industries/3d-printing-aerospace

“Infografía: La impresión 3D en el espacio - 3Dnatives”. Zugegriffen: 31. August 2023. [Online]. Verfügbar unter: https://www.3dnatives.com/es/infografia-impresion-3d-espacio-190120232/#!

“La impresión 3D revoluciona el sector espacial – BSDI”. Zugegriffen: 31. August 2023. [Online]. Verfügbar unter: https://bsdi.es/impresion-3d-sector-espacial/

“La innovación de la impresión 3D en la carrera espacial”. Zugegriffen: 31. August 2023. [Online]. Verfügbar unter: https://wwwhatsnew.com/2023/05/06/la-innovacion-de-la-impresion-3d-en-la-carrera-espacial/

“La revolución de la impresión 3D en la carrera espacial”. Zugegriffen: 31. August 2023. [Online]. Verfügbar unter: https://www.turismodeestrellas.com/impresion-3d-industria-aeroespacial

“Los satélites estarán equipados con sensores de bajo coste impresos en 3D | gagadget.com”. Zugegriffen: 31. August 2023. [Online]. Verfügbar unter: https://gagadget.com/es/151692-los-satelites-estaran-equipados-con-sensores-de-bajo-coste-impresos-en-3d/

“El ingenioso método del MIT para tener satélites más baratos: sensores impresos en 3D”. Zugegriffen: 1. September 2023. [Online]. Verfügbar unter:

https://www.elespanol.com/omicrono/tecnologia/20220806/ingenioso-metodo-mit-satelites-baratos-sensores-impresos/554694904_0.html

“Planetary Resources utiliza la impresión 3D para sus proyectos de minería”. Zugegriffen: 31. August 2023. [Online]. Verfügbar unter: https://impresiontresde.com/planetary-resources-utiliza-en-la-impresion-3d-para-sus-proyectos-de-mineria-de-asteroides/

D. Tranfield, D. Denyer, und P. Smart, “Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review”.

“Comparativa entre el PLA, el ABS y el nylon”. Zugegriffen: 1. September 2023. [Online]. Verfügbar unter: https://markforged.com/es/resources/blog/pla-abs-nylon

“Material ABS: una guía de creación rápida de prototipos | Blog rápido directo”. Zugegriffen: 3. September 2023. [Online]. Verfügbar unter: https://www.rapiddirect.com/es/blog/gu%C3%ADa-de-materiales-abdominales/

“PLA vs ABS vs PETG: Las Diferencias. – IDEA161”. Zugegriffen: 3. September 2023. [Online]. Verfügbar unter: https://idea161.org/2021/06/08/pla-vs-abs-vs-petg-las-diferencias/

“Todo sobre el Nylon (PA). Propiedades, Cómo Usar y las Mejores Marcas”. Zugegriffen: 2. September 2023. [Online]. Verfügbar unter: https://descubrearduino.com/nylon-impresion-3d/

“PLA y PETG: características, diferencias y aplicaciones”. Zugegriffen: 2. September 2023. [Online]. Verfügbar unter: https://abax3dtech.com/2020/12/15/pla-y-petg-caracteristicas-diferenciasy-aplicaciones/

“Filamento ABS 750 gr para impresión 3D”. Zugegriffen: 2. September 2023. [Online]. Verfügbar unter: https://3dlaboratorio.es/plastic-abs.htm

“Aluminio, Información técnica, historia y propiedades · Alu-Stock S.A.” Zugegriffen: 3. September 2023.

[Online]. Verfügbar unter: https://www.alu-stock.es/es/informacion-tecnica/el-aluminio/

Published

2024-07-31

How to Cite

Soliz, J., & Cuiza, M. (2024). 3D PRINTING IN THE CREATION OF STRUCTURES CUBESATS VS. CONVENTIONAL MATERIALS. Revista Investigación &Amp; Desarrollo, 24(1), 121–129. https://doi.org/10.23881/idupbo.024.1-10i

Issue

Section

Ingenierías