GANTRIES FOR LABORATORY EXPERIMENTATION: BRIDGING THEORY AND PRACTICE THROUGH MATERIALS AND STRUCTURES RESEARCH ALONG WITH ACADEMIC ADVANCEMENT
DOI:
https://doi.org/10.23881/idupbo.023.1-6iKeywords:
Ensayo de Materiales, Pórtico de Laboratorio, Hormigón Armado, Concreto, Materiales AlternativosAbstract
The gantries for laboratory experimentation constitutes a transcendental tool for the characterization of the mechanical behavior of structural elements made of various materials. The definition of fundamental relationships, such as stress-strain, which allows to design structures efficiently, appropriately, and safely, arises from extensive experimental campaigns. Moreover, the use of gantries for testing the properties of different materials allows the implementation of research at different engineering courses related with the study of materials; also, it allows to study the behavior of different materials and innovative materials for structural use, such as those resulting from industrial processes like rice natural fiber or glass powder. The preliminary experimentation and the results obtained were conducted on wood elements, and they are part of a research line looking for a better understanding of elasticity properties in materials such as steel, reinforced concrete, masonry, among other. The present work aims to demonstrate the capabilities of using testing porticos to bridge the gap between theoretical knowledge and practical application at the academic and research levels within structural engineering. This is achieved through a review of the evolution and usefulness of these elements in education. With this purpose, a bibliographic review of works developed mainly at the Latin American level in laboratories equipped with gantries is conducted. The evolution of these elements is described, along with the main characteristics of different gantries. Standard practices associated with conducting tests on these devices are also presented, and finally, a brief analysis of experimental results and their relevance in academia and research is performed.Downloads
References
S. Wang, «Teaching Research of Material Mechanics Aimed at Stimulating Vocational College Students’ Interest Based on Simulation Technology,» Scientific and Social Research, p. 7, 2022.
Z. Wang, X. Gu, S. Mohrmann, Z. Shen, Y. Huang y Y. Zhou, «Study on the four-point bending beam method to improve the testing accuracy for the elastic constants of wood,» European Journal of Wood and Wood Products, pp. 1-11, 2023.
J. M. Canet, «Resistencia de materiales y estructuras,» Centro Internacional de Métodos Numéricos en Ingeniería, Barcelona, 2012.
M. Bado y J. Casas, «A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring,» Sensors, 2021.
H. Chowdhury, F. Alam y I. Mustary, «Development of an innovative technique for teaching and learning of laboratory experiments for engineering courses,» Procedia, pp. 806-811, 2019.
A. Lapuebla-Ferri, A. Jimémenz-Mocholi, F. Giménez-Palomares y J. Monsoriu, «Uso de laboratorios virtuales en la enseñanza de asignaturas de grados de la rama industrial: antecedentes, estado actual y reflexiones,» Técnica industrial, pp. 40-47, 2018.
Bažant, Z. P.; Yu, Q.; Gerstle, W.; Hanson, J.; and Ju, J., 2007, “Justification of ACI 446 Code Provisions for Shear Design of Reinforced Concrete Beams,” ACI Struc-tural Journal, V. 104, No. 5, Sept.-Oct., pp. 601-610. doi: 10.14359/18862
F. M. D. More y S. S. S. Subramanian, «Experimental Investigation on the Axial Compressive Behaviour of Cold-Formed Steel-Concrete Composite Columns Infilled with Various Types of Fibre-Reinforced Concrete,» Buildings, vol. 13, nº 1, p. 151, 2023.
F. M. D. S. More y S. S. Subramanian, «Impact of fibres on the mechanical and durable behaviour of fibre-reinforced concrete,» Buildings, vol. 12, nº 9, 2022.
H. Jemii, A. Bahri, R. Taktak, N. Guermazi y F. Lebon, «Mechanical behavior and fracture characteristics of polymeric pipes under curved three point bending tests: Experimental and numerical approaches,» Engineering Failure Analysis, vol. 138, p. 106352, 2022.
J. Yang y L. Wang, «Experimental research on flexural behaviors of damaged PRC beams strengthened with NSM CFRP strips,» Construction and Building Materials, vol. 190, pp. 265-275, 2018.
A. Li, Z. Yang, S. Liu, Y. Liu y H. Liu, «Experimental study on flexural fatigue behavior of composite T-beams in ultra-high performance concrete reinforced and normal-strength concrete. International Journal of Fatigue, 167, 107330.,» International Journal of Fatigue, vol. 167, 2023.
W. Li, B. Chen, L. H. Han y D. Lam, «Experimental study on the performance of steel-concrete interfacs in circular concrete-filled double skin steel tube,» Thin-walled structures, 2020.
A. S. D. R. Gautham, «Behavior of steel-reinforced composite concrete columns under combined axial and lateral cyclic loading,» Journal of Building Engineering, vol. 39, 2021.
C. Pantelides, M. E. Gibbons y R. L. D., «Axial Load Behavior of Concrete Columns Confined with GFRP Spirals,» Journal of Composites for Construction, vol. 17, nº 3, pp. 305-313, 2013.
A. Vallejos Balladares, «Flexural-shear resistance of prestressed concrete members without shear reinforcement,» S/E, Delft, Países Bajos, 2022.
K. Schabowicz, «Non-Destructive Testing of Materials in Civil Engineering,» Materials, 2019.
W. Pole, The life of Sir William Fairbairn, Londres: Longmans, Green and Co., 1877.
M. R. León Ordoñez y R. D. Lema Guamán, «Análisis y diseño de pórtico de ensayo para Laboratorio de Ingeniería Civil,» D/E, Cuenca, Ecuador, 2019.
IBERTEST SAE, «Ibertest. Advanced Testing Solutions,» [En línea]. Available: https://www.ibertest.es/en/products/frames-for-structural-tests-and-large-elements/.
J. Bazan, «Estudio experimental y numérico del comportamiento de flexión de vigas de concreto armado reforzadas con bandas de FRP,» S/E, Lima, Perú, 2015.
L. Pérez Gacítua, «Diseño de un marco de carga para la Facultad de Ingeniería,» S/E, Concepción, Chile, 2017.
ASTM, «Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading,» American Society for Testing and Materials, 2022.
ASTM, «Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading),» American Society for Testing and Materials, 2022.
ASTM, «Standard Practice for Making and Curing Concrete Test Specimens in the Field,» American Society for Testing and Materials, 2022.
ASTM, «Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory,» American Society for Testing and Materials, 2022.
ASTM, «Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading),» American Society for Testing and Materials, 2022.
ASTM, «Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,» American Society for Testing and Materials, 2021.
ASTM, «Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature,» American Society for Testing and Materials, 2019.
ASTM, «Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,» American Society for Testing and Materials, 2022.
M. Babiak, M. Gaff, A. Sikora y S. Hysek, «Modulus of elasticity in three- and four-point bending of wood,» Composite Structures, vol. 204, nº 15, pp. 454-465, 2018.
S. Francke, B. Franke y A. M. Harte, «Failure modes and reinforcement techniques for timber beams – State of the art,» Construction and Building Materials, vol. 97, pp. 2-13, 2015.
B. C. Bal, «Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber,» Construction and Building Materials, vol. 51, nº 31, pp. 9-14, 2014.
Soleimani, S. M., & Sayyar Roudsari, S. (2019). Analytical Study of Reinforced Concrete Beams Tested under Quasi-Static and Impact Loadings. Applied Sciences, 9(14), 2838. MDPI AG. Retrieved from http://dx.doi.org/10.3390/app9142838
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Carlos N. A. Salinas-Rodriguez, Fabiana Viscarra Agreda, Andrés Vallejos Valladares
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Creative Commons Attribution-Noncommercial-Share Alike
CC BY-NC-SA
This license lets others remix, tweak, and build upon your work for non-commercial purposes, as long as they credit the author(s) and license their new creations under the identical terms.
The authors can enter additional separate contract agreements for non-exclusive distribution of the version of the article published in the magazine (for instance, they may publish it in an institutional repository or a book), subject to an acknowledgement of its initial publication in this magazine.