RANs turbulence models performance to predict heat transfer characteristics of low gwp fluids flow in microchannels

Authors

  • Eduardo Miranda Universidad de La Serena
  • Daniel Sempértegui-Tapia Universidad Privada Boliviana
  • Cristian Chávez Universidad de La Serena

DOI:

https://doi.org/10.23881/idupbo.021.1-6i

Keywords:

Turbulence, Microchannels, Numerical, Pressure Drop, Heat Transfer

Abstract

This paper evaluates the capacity of the following turbulence models: standard k - ε, RNG k - ε, k - ω standard, k - ω SST, Realizable k - ε and Low-Re k - ε to predict the fluid mechanics and heat transfer characteristics of low GWP fluid flow in a 1.1 mm ID microchannel. These turbulence models were evaluated for Reynolds Numbers up to 104. The numerical results for velocity profile, friction factors and Nusselt Numbers are validated with analytical and experimental data published in previous works for R134a, R1234yf, R1234ze(E) and R600a. Parametric behaviors of pressure drop and heat transfer coefficient are presented and analyzed. The results indicate that each of the models describes the qualitative behavior of flow and heat transfer processes. On the other hand, the quantitative results indicate that the Low-Re k - ε, k - ω and k - ω SST models demonstrate an acceptable prediction of some variable’s behavior. Numerically, the Low-Re k - ε model presents an accurate prediction with the lowest mean absolute.

Downloads

Download data is not yet available.

Author Biographies

Eduardo Miranda, Universidad de La Serena

Departamento de Ingeniería Mecánica

Daniel Sempértegui-Tapia, Universidad Privada Boliviana

Centro de Investigaciones Opticas y Energia (CIOE)

Cristian Chávez, Universidad de La Serena

Departamento de Ingeniería Mecánica

References

Y. Zhai, G. Xia, Z. Chen, and Z. Li, “Micro-PIV study of flow and the formation of vortex in micro heat sinks with cavities and ribs,” Int. J. Heat Mass Transf., vol. 98, pp. 380–389, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.03.044.

M. Ciofalo, J. Stasiek, and M. W. Collins, “Investigation corrugated of flow and heat transfer Numerical simulations,” Int. J. Heat Mass Transf., vol. 39, no. 1, pp. 165–192, 1996.

D. Xu, T. Y. Ng, L. S. Pan, K. Y. Lam, and H. Li, “Numerical simulations of fully developed turbulent liquid flows in micro tubes,” J. Micromechanics Microengineering, vol. 11, no. 3, pp. 175–180, 2001, doi: 10.1088/0960-1317/11/3/303.

P. Asinari, “Numerical prediction of turbulent convective heat transfer in mini/micro channels for carbon dioxide at supercritical pressure,” Int. J. Heat Mass Transf., vol. 48, no. 18, pp. 3864–3879, 2005, doi: 10.1016/j.ijheatmasstransfer.2005.03.028.

M. K. Sung and I. Mudawar, “Experimental and numerical investigation of single-phase heat transfer using a hybrid jet-impingement/micro-channel cooling scheme,” Int. J. Heat Mass Transf., vol. 49, no. 3–4, pp. 682–694, 2006, doi: 10.1016/j.ijheatmasstransfer.2005.08.021.

S. Blonski, P. M. Korczyk, and T. A. Kowalewski, “Analysis of turbulence in a micro-channel emulsifier,” Int. J. Therm. Sci., vol. 46, no. 11, pp. 1126–1141, 2007, doi: 10.1016/j.ijthermalsci.2007.01.028.

D. F. Sempértegui-Tapia and G. Ribatski, “Flow boiling heat transfer of R134a and low GWP refrigerants in a horizontal micro-scale channel,” Int. J. Heat Mass Transf., vol. 108, pp. 2417–2432, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.01.036.

F. S. Lien and M. A. Leschziner, “A pressure-velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment turbulence closure,” J. Fluids Eng. Trans. ASME, vol. 115, no. 4, pp. 717–725, 1993, doi: 10.1115/1.2910204.

B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng., vol. 3, pp. 269–289, 1974, doi: 10.1007/JHEP10(2012)057.

V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique,” Phys. Fluids A, vol. 4, no. 7, pp. 1510–1520, 1992, doi: 10.1063/1.858424.

T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, “A new k-ε eddy viscosity model for high Reynolds number turbulent flows,” Comput. Fluids, vol. 24, no. 3, pp. 227–238, 1995, doi: 10.1007/978-3-319-27386-0_7.

D. C. Wilcox, “Formulation of the k-ω turbulence model revisited,” AIAA J., vol. 46, no. 11, pp. 2823–2838, 2008, doi: 10.2514/1.36541.

F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994, doi: 10.2514/3.12149.

F. R. Menter and T. Esch, “Elements of industrial heat transfer predictions,” 16th Brazilian Congr. Mech. Eng., 2001.

R. A. W. M. Henkes, F. F. Van Der Vlugt, and C. J. Hoogendoorn, “Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models,” Int. J. Heat Mass Transf., vol. 34, no. 2, pp. 377–388, 1991, doi: 10.1016/0017-9310(91)90258-G.

D. F. Sempértegui-Tapia and G. Ribatski, “Two-phase frictional pressure drop in horizontal micro-scale channels : Experimental data analysis and prediction method development,” Int. J. Refrig., vol. 79, pp. 143–163, 2017, doi: 10.1016/j.ijrefrig.2017.03.024.

D. F. Sempértegui-Tapia, J. De Oliveira Alves, and G. Ribatski, “Two-Phase flow characteristics during convective boiling of halocarbon refrigerants inside horizontal small-diameter tubes,” Heat Transf. Eng., vol. 34, no. 13, pp. 1073–1087, Oct. 2013, doi: 10.1080/01457632.2013.763543.

H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The finite VOlume Method, 2nd ed., vol. 2nd Editio. 2007.

R. Siegel, E. M. Sparrow, and T. M. Hallman, “Steady laminar heat transfer in a circular tube with prescribed wall heat flux,” Appl. Sci. Res. Sect. A, vol. 7, no. 5, pp. 386–392, 1958, doi: 10.1007/BF03184999.

H. Blasius, “Das ahnlichkeitsgesetz bei reibungsvorg/ingen in fltissigkeiten,” Forschg. Arb. Ing. Wes., vol. 131, 1913.

T. M. Adams, S. I. Abdel-Khalik, S. M. Jeter, and Z. H. Qureshi, “An experimental investigation of single-phase forced convection in microchannels,” Int. J. Heat Mass Transf., vol. 41, no. 6–7, pp. 851–857, 1998, doi: 10.1016/S0017-9310(97)00180-4.

Published

2021-07-31

How to Cite

Miranda, E., Sempértegui-Tapia, D., & Chávez, C. (2021). RANs turbulence models performance to predict heat transfer characteristics of low gwp fluids flow in microchannels. Revista Investigación &Amp; Desarrollo, 21(1). https://doi.org/10.23881/idupbo.021.1-6i

Issue

Section

Ingenierías