HYDROLOGICAL MODELLING UNDER CLIMATE CHANGE SCENARIOS FOR A WATER RESERVOIR IN LA PAZ, BOLIVIA
DOI:
https://doi.org/10.23881/idupbo.021.1-5iKeywords:
Climate Change, Hydrologic Modeling, Water Security, WEAP ToolAbstract
The Milluni Grande reservoir depends mainly on precipitation, being vulnerable to drought periods, which may affect the water security among La Paz and El Alto cities. Therefore, the present study sought to determine the variation of water available in the reservoir under the set of climate change scenarios stablished on the fifth report of the Intergovernmental Panel on Climate Change (IPCC) for the period 2022-2090. The study area was limited to the Milluni microbasin, taking the Milluni Grande reservoir as the outlet point. The hidrological modelling was performed through the Water Evaluation and Planning System (WEAP) using the temperature and precipitation daily data ensemble generated with the Gridded Meteorological Ensemble Tool (GMET). Climate change scenarios were incorporated using the Model 1 of Norway Land System NorESM1-M, reducing its scale through the nearest neighbor non-parametric method (knn-bootstrap). The following tendencies were obtained for the study period and area: overall temperature rise, precipitation rise during the dry seasons and precipitation reduction during the wet seasons, which might cause drought situations. On the other hand, the Milluni Grande inlet flow tends to vary proportionally to the precipitation, while its volume tends to decrease. In addition, a deficit in the coverage of the requirements of demand sites might exist, reaching minimum values of 45% for the Achachicala distribution system and 27% for the Meseta system. All results are accentuated in the pessimistic scenario RCP 8.5.Downloads
References
Institut de recherche pour le dèveloppement , «Horizon documentation,» [En línea]. Available: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-12/010055130.pdf. [Último acceso: 04 05 2021].
Empresa Pública Social de Agua y Saneamiento, «EPSAS,» 2018. [En línea]. Available: http://www.epsas.com.bo/web/wp-content/uploads/2019/05/PDQ_2018.pdf. [Último acceso: 04 05 2021].
O. Campanini, «Centro de Documentación e Información Bolivia,» 2017. [En línea]. Available: https://cedib.org/wp-content/uploads/2017/08/agua-y-mineria-en-Bolivia.pdf. [Último acceso: 04 05 2021].
Viceministerio de Recursos Hídricos, «Informe de monitoreo Cuenca Katari,» La Paz, 2017.
Á. Soruco, C. Vincent, A. Rabatel, B. Francou, E. Thibert, J. E. Sicart y T. Condom, «Contribution of glacier runoff to water resources of La Paz city,,» Annals of Glaciology, vol. 56, nº 70, pp. 147-154, 2015.
M. Escobar, N. Lima, D. Purkey, D. Yates y L. Forni, «Modelación hidrológica y escenarios de Cambio climático en cuencas de suministro de agua de las ciudades La Paz y El Alto, Bolivia,» Aqua-LAC, vol. 5, nº 2, pp. 23-34, 2013.
L. Andersen y L. C. Jemio, La dinámica del cambio climático en Bolivia, Fundación INESAD, 2015.
Programa de las Naciones Unidas para el Desarrollo, «Tras las huellas del cambio climático en Bolivia,» 2011.
Viceministerio de Recursos Hídricos y Riego, «Plan Director de la Cuenca Katari y Lago Menor del Titicaca - Microcuencas Bolivia,» La Paz, 2018.
Ministerio de Medio Ambiente y Agua, «Balance Hídrico Superficial de Bolivia,» La Paz, 2018.
Organización de las Naciones Unidas para la Alimentación y la Agricultura, «Evapotranspiración del cultivo: guía para la determinación de los requerimientos de agua de los cultivos».
Instituto Nacional de Estadística, «Estimaciones y proyecciones de población,» 2020.
M. Bentsen, I. Bethke, J. B. Debernard, T. Iversen, A. Kirkevag, O. Seland, H. Drange, C. Roelandt, I. A. Seierstad, C. Hoose y J. E. Kristjánsson, «The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate,» Geoscientific Model Development, vol. 6, pp. 687-720, 2013.
D. van Vuuren, J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S. Smith y S. Rose, «The representative concentration pathways: an overview,» Climatic Change, vol. 109, pp. 5-31, 2011.
S. Gangopadhyay y M. Clark, «Statistical downscaling using K-nearest neighbors,» Water Resources Research, vol. 41, 2005.
Stockholm Environment Institute, «Modelación estratégica de la cuenca del Río Rocha,» Cochabamba, 2018.
D. Yates, «A technique for generating regional climate scenarios using a nearest-neighbor algorithm,» Water Resources Research, vol. 39, nº 7, 2003.
Cooperación Suiza en Bolivia, «Eventos extremos a partir de escenarios climáticos: Análisis en municipios rurales de Bolivia - zonas andinas y valles,» 2014.
J. M. Thibeault, A. Seth y M. García, «Changing climate in the Bolivian Altiplano: CMIP3 projections for temperature and precipitation,» Journal Of Geophysical Research, vol. 115, 2010.
C. Seiler, R. W. Hutjes y P. Kabat, «Likely Ranges of Climate Change in Bolivia,» American Meteorological Society, vol. 52, pp. 1303-1317, 2013.
K. Driesen, «Contamination of surface waters by the former mining industry in the Milluni Valley (Cordillera Real, Bolivia) and the application of the water planning model WEAP,» 2012.
Additional Files
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Creative Commons Attribution-Noncommercial-Share Alike
CC BY-NC-SA
This license lets others remix, tweak, and build upon your work for non-commercial purposes, as long as they credit the author(s) and license their new creations under the identical terms.
The authors can enter additional separate contract agreements for non-exclusive distribution of the version of the article published in the magazine (for instance, they may publish it in an institutional repository or a book), subject to an acknowledgement of its initial publication in this magazine.