GENERACIÓN DE OPCIONES DE DESTINO PARA SEMIPRODUCTOS DEL ACERO EN LAS EMPRESAS SIDERÚRGICAS

Autores/as

  • Doniel Jiménez Sánchez
  • José Arzola Ruiz

DOI:

https://doi.org/10.23881/idupbo.021.1-8i

Palabras clave:

Dirección de la Producción, Selección de Materiales, Redes Neuronales de Base Radial, Regularización

Resumen

Las mejores opciones de destino de hornadas de los semiproductos para la producción terminada de los talleres de la industria siderúrgica son aquellas en las que se minimiza el exceso de propiedades mecánicas con respecto a sus valores normados y se aseguran, por tanto, los valores requeridos de éstas. En este proceso se hace necesaria la estimación de las propiedades mecánicas de las hornadas a partir de su composición química y superficie transversal del producto terminado. En este trabajo la estimación se hizo mediante las redes neuronales de base radial regularizada, a partir de los datos acumulados de ensayos mecánicos en los talleres adoptados como caso de estudio. La utilización de estas redes permite disminuir los errores en la estimación de las propiedades mecánicas de los perfiles ligeros de acero. Se obtienen resultados satisfactorios en la generación de opciones de destino en un caso de estudio.

Descargas

Los datos de descargas todavía no están disponibles.

Afiliación del autor/a

Doniel Jiménez Sánchez

Centro de Estudios de Matemática para las Ciencias Técnicas (CEMAT)

José Arzola Ruiz

Centro de Estudios de Matemática para las Ciencias Técnicas (CEMAT)

Referencias

J. Arzola Ruiz y L. Suárez, “Reglas de conducta en la proyección y conducción de procesos de calentamiento del acero,” Revista Argus, vol. 47, pp. 25-30, 1993.

J. Arzola Ruiz, Sistemas de Ingeniería, 2nd ed. La Habana: Editorial Félix Varela, 2012.

B. Wu, Manufacturing Systems Design and Analysis. Netherlands: Springer Netherlands, 1991.

M. Ashby, Materials Selection in Mechanical Design. Inglaterra: Elsevier, 2011.

M. F. Ashby, H. Shercliff, y D. Cebon, Materials: Engineering, science, processing and design, 2nd ed. Inglaterra: Elsevier Ltd, 2010.

D. Jiménez Sánchez y J. Arzola Ruiz, “Redes neuronales regularizadas aplicadas a la estimación de propiedades mecánicas de perfiles de acero,” Ingeniería Mecánica, vol. 20, no. 3, pp. 115-121, 2017.

D. J. Zambrano Ortiz, D. Jiménez Sánchez, y J. Arzola Ruiz, “Estimación comparativa de propiedades mecánicas de perfiles ligeros de acero mediante diferentes estructuras de modelos matemáticos,” presentado en XIII Seminario Euro Latinoamericano de Sistemas de Ingeniería, Holguín, Cuba, 2017.

D. J. Zambrano Ortiz, D. Jiménez Sánchez, y J. Arzola Ruiz, “Generación y selección óptima de opciones de destino de hornadas en fábricas siderúrgicas,” presentado en XIII Seminario Euro Latinoamericano de Sistemas de Ingeniería, Holguín, Cuba, 2017.

G. Wang, L. Liu, Y. Tu, X. Xu, Y. Yuan, M. Song, y W. Li, “Application of the radial basis function neural network to the short term prediction of the earth's polar motion,” Studia Geophysica et Geodaetica, vol. 62, no. 2, pp. 243-254, 2018.

S. Slema, A. Errachdi, y M. Benrejeb, “A radial basis function neural network model reference adaptive controller for nonlinear systems,” en 15th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, marzo 2018, pp. 958-964.

S. Liu, J. Tang, y J. Song, “Order-planning model and algorithm for manufacturing steel sheets,” International Journal of Production Economics, vol. 100, no. 1, pp. 30-43, 2006.

T. Zhang, W. A. Chaovalitwongse, Y. J. Zhang, y P. M. Pardalos, “The hot-rolling batch scheduling method based on the prize collecting vehicle routing problem,” Journal of Industrial & Management Optimization, vol. 5, no. 4, pp. 749-765, 2009.

A. Stawowy y J. Duda, “Models and algorithms for production planning and scheduling in foundries - current state and development perspectives,” Archives of Foundry Engineering, vol. 12, no. 2, pp. 69-74, 2012.

Z. Q. Zhao y D. S. Huang, “A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability,” Applied Mathematical Modelling, vol. 31, no. 7, pp. 1271-1281, 2007.

B. Samanta y S. Bandopadhyay, “Construction of a radial basis function network using an evolutionary algorithm for grade estimation in a placer gold deposit,” Computers & Geosciences, vol. 35, no. 8, pp. 1592-1602, 2009.

Y. L. Zou, F. L. Hu, C. C. Zhou, C. L. Li, y K. J. Dunn, “Analysis of radial basis function interpolation approach,” Applied Geophysics, vol. 10, no. 4, pp. 397-410, 2013.

N. Karayiannis, “Reformulated radial basis neural networks trained by gradient descent,” IEEE Transactions on Neural Networks, vol. 10, no. 3, pp. 657-671, 1999.

K. Patan, Articial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes. Berlin: Springer Berlin Heidelberg, 2008.

C. S. Kumar Dash, A. Kumar Behera, S. Dehuri, y S.B. Cho, “Radial basis function neural networks: a topical state-of-the-art survey,” Open Computer Science, vol. 6, no. 1, pp. 33-63, 2016.

J. Wesley Hines, MATLAB supplement to Fuzzy and neural approaches in engineering. New York: Wiley, 1997.

B. M. Brío y A. Sanz Molina, Redes neuronales y sistemas borrosos. Madrid: RA-MA, 2001.

G. A. Montazer, D. Giveki, M. Karami, y H. Rastegar, “Radial basis function neural networks: A review,” Computer Reviews Journal, vol. 1, no. 1, pp. 52-74, 2018.

J. C. Pérez Mesa, J. P. Valenciano, y J. P. Levy Manguin, “Empleo de redes neuronales de base radial a un modelo econométrico de exportación de tomate,” Ciencia Ergo Sum, vol. 14, no. 1, pp. 6-14,

F. A. Lucay, F. D. Sepúlveda, y J. Delgado, “Aplicación de redes neuronales artifciales de base radial y geoestadística para la interpolación/reconstrucción de base de datos de leyes de cobre,” Revista de Medio Ambiente y Minería, no. 5, pp. 44-58, 2018.

H. W. Engl, M. Hanke, y A. Neubauer, Regularization of Inverse Problems. Netherlands: Springer Netherlands, 1996.

Y. Wang, A. G. Yagola, y C. Yang, Optimization and Regularization for Computational Inverse Problems and Applications. Berlin: Springer-Verlag GmbH, 2011.

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 2nd ed. New York: Springer-Verlag GmbH, 2011.

F. D. Moura Neto y A. J. Silva Neto, An Introduction to Inverse Problems with Applications. Springer-Verlag GmbH, 2013.

E. Somersalo y J. Kaipio, Statistical and Computational Inverse Problems. New York: Springer-Verlag GmbH, 2006.

A. Doicu, T. Trautmann, y F. Schreier, Numerical Regularization for Atmospheric Inverse Problems. Berlin: Springer-Verlag GmbH, 2010.

R. C. Aster, B. Borchers, y C. H. Thurber, Parameter estimation and inverse problems, 3rd ed. Netherlands: Elsevier, 2019.

C. Hansen y M. Saxild Hansen, “AIR Tools- A MATLAB package of algebraic iterative reconstruction Methods,” Journal of Computational and Applied Mathematics, vol. 236, pp. 2 167-2 178, 2012.

Archivos adicionales

Publicado

31-07-2021

Cómo citar

Jiménez Sánchez, D., & Arzola Ruiz, J. (2021). GENERACIÓN DE OPCIONES DE DESTINO PARA SEMIPRODUCTOS DEL ACERO EN LAS EMPRESAS SIDERÚRGICAS. Revista Investigación &Amp; Desarrollo, 21(1). https://doi.org/10.23881/idupbo.021.1-8i

Número

Sección

Ingenierías