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ABSTRACT 
 

Cloud attenuation in satellite communication systems becomes a relevant issue as the frequency increases, and thus, it 

has to be taken into account when link availability is being calculated. This atmospheric impairment is a variable 

atmospheric phenomenon whose characterization has to be done not only on a yearly-basis but also on a seasonal and 

monthly basis. In the present paper, cloud attenuation statistics are reported at 20 GHz, 40 GHz and 75 GHz during 

rainy and non-rainy seasons in El Alto, Bolivia, at 4065 m of altitude, using 3 years of radiosoundings (2016-2019). 

Cloud detection models have been used for the calculations, including Salonen, Salonen08, Decker and CldMod 

models, and results obtained are compared to those given by the global model of the ITU-R Rec. P.840. The results lead 

to conclude that zenith cloud attenuation during rainy season can reach maximum values between 0.15 and 0.45 dB (20 

GHz), 0.55 and 1.5 dB (40 GHz), and 1.3 and 3.9 dB (75 GHz) depending on the model to be used. In comparison, 

during non-rainy season these values vary between 0.08 and 0.33 dB (20 GHz), 0.26 and 1.1 dB (40 GHz), and 0.62 and 

2.6 dB (75 GHz). On the other hand, statistics based on CldMod model and, in a less extent, Decker model are close to 

the ones obtained using the ITU-R global model. These observations could open the possibility of further studies 

assessing the reliability of meteorological parameters in digital maps at high altitude sites, because these data are used 

in global propagation models.   
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RESUMEN 
 

La atenuación por nubes en sistemas de comunicaciones por satélite adquiere mayor importancia a medida que aumenta 

la frecuencia de operación del sistema. Se trata de un fenómeno variable cuya caracterización es imprescindible, no sólo 

sobre una base estadística anual sino también estacional. En este artículo se presentan estadísticas de atenuación por 

nubes en 20 GHz, 40 GHz y 75 GHz durante los periodos de lluvia y no-lluvia a 4065 m de altitud, basados en el 

análisis de 3 años de radiosondeos (2016-2019) en El Alto, Bolivia. Se utilizan los modelos de Salonen, Salonen08, 

Decker y CldMod y los resultados se comparan con el modelo global de la Rec. UIT-R P.840. Los resultados llevan a 

concluir que la atenuación cenital debida a nubes durante época de lluvia puede alcanzar valores máximos entre 0.16 y 

0.45 dB (20 GHz), entre 0.5 y 1.5 dB (40 GHz), y entre 1.3 y 3.9 dB (75 GHz) dependiendo del modelo que fue 

utilizado. En comparasión, durante época de no-lluvia estos valores varían entre 0.08 y 0.33 dB (20 GHz), entre 0.26 y 

1.1 dB (40 GHz), y entre 0.62 y 2.6 dB (75 GHz). Por otro lado, las estadísticas en base a los modelos CldMod y, en 

menor medida, Decker se aproximan mejor a los resultados del modelo de la UIT-R. Estas observaciones abren la 

posibilidad a trabajos adicionales que evalúen la confiabilidad de los parámetros meteorológicos de los mapas digitales 

modelos globales en sitios con una altitud considerable, debido a que éstos se utilizan en modelos de propagación 

globales. 
 

Palabras Clave: Comunicaciones Satelitales, Atenuación Por Nubes, Propagación, Radiosondeos. 
 

 

1. INTRODUCTION  
 
The increasing demand of bandwidth by end users of satellite communication systems, which are suitable to reach those 

regions without neither fiber nor cellular coverage, is moving operators to use high frequencies. However, as a well-

known rule of thumb, as frequency increases the propagation impairments become more critical, negatively affecting 

the availability of satellite links, thus the QoS (Quality of Service) offered by operators. To date, most of propagation 

studies found in the technical literature have been developed in the Northern hemisphere and temperate regions. In 

recent years, also tropical climates have drawn attention from propagation scientific community. However, to our 

knowledge, high altitude regions where weather conditions would be at the origin of better propagation conditions have 

not been studied yet. In this sense, the Propagation Series (P-series) of the ITU-R (International Telecommunications 

Union, Radiocommunication sector) Recommendations should be assessed in such conditions because some countries, 
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including Bolivia, have population living in isolated communities in Andean regions, where altitude can be as high as 

4000 meters a.m.s.l. 

 

TABLE 1 - GENERAL CHARACTERISTICS OF RADIOSONDE 

Site El Alto Airport 

Period 08/2016 to 07/2019 

Launch time 12:00 UTC 

Radiosonde model Vaisala RS92-SGP 

File format TSV (Tab Separate Value) 

Vertical resolution (m) 10-15 

Time elapsed between vertical levels  (s) 2 

Number of valid radiosondes 722 

 

 
 

Figure 1: Location of the radiosonde launching site at the El Alto Airport, in La Paz city, Bolivia.  

 

The present work is focused on the estimation of cloud attenuation at Ka-band, currently used for high data rate satellite 

connectivity, and also at Q- and W-bands, as they have been announced as candidate frequencies for future SatCom 

systems [1][2]. In particular, the aim of this work is the estimation of statistics of cloud attenuation during rainy and 

non-rainy seasons at a high altitude site, therefore extending the previous results reported in [3]. For this purpose, a 

multi-year database of radiosoundings carried out in El Alto Airport (La Paz, Bolivia) has been analyzed. The vertical 

meteorological profiles extracted from these measurements are used as input data of models allowing the presence of 

clouds to be detected and their water liquid content to be estimated. Cloud attenuation statistics obtained using these 

models, both in rainy and non-rainy seasons, have been then compared with similar statistics computed using the well 

accepted ITU-R global model given in the last version of the P.840 Recommendation [4], which is the main reference 

for satellite communication link designers.   

 

The remainder of the present paper is organized as follows. After this brief introduction, Section 2 describes the 

geographical site and its mean precipitation characteristics allowing to identify rainy and non-rainy seasons. The 

methodology used for processing the input data is described in Section 3. The models to detect de presence of clouds 

and the methods used to calculate cloud attenuation are summarized in Section 4. The main results are presented in 

Section 5 in the form of seasonal statistics of cloud attenuation at the frequencies of interest, and main conclusions are 

drawn in Section 6.  
 

 

2. SITE DESCRIPTION 
 

The Bolivian National Service of Meteorology (SENAMHI) provided 3 years of vertical meteorological profiles used in 

this work. These data were collected from August 2016 to July 2019, in El Alto Airport, located in La Paz city, Bolivia 

(see Figure 2). This station is located at 16.51° S, 68.17° W at an altitude of 4065 meters above mean sea level. In total, 

the database is composed of 733 radiosondes, launched at 12:00 UTC, during working days. Table I provides further 

technical information on the dataset. 
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TABLE 2 – HISTORICAL AVERAGE PRECIPITATION DATA 1981-2000 IN EL ALTO AIRPORT 

DATA EXTRACTED FROM [5] 
 

Month  Accumulated precipitation (mm) Percentage of rainy days (%) 
January 135.3 70 

February 94.8 63 

March 83.2 52 

April 35.5 35 

May 10.6 12 

June 8.4 9 

July 6.7 7 

August 13.9 14 

September 28.4 26 

October 46.0 37 

November 54.6 42 

December 91.6 55 

 
El Alto is located in the Central Andes, a high altitude mountainous territory extended between the western side of 

Bolivia and southeast region of Peru, with an average altitude of 3700 m.a.s.l. A 30-year exhaustive study performed by 

Andrade et. al. [5] shows that extreme climate events can occur in this region because it represents “a formidable 

obstacle to the tropospheric circulation”, i.e. a massive geographical barrier between ocean and low altitude continental 

regions. Between these events, precipitations occur in well differentiated periods of the year, as it can be seen in Table 

2, where rainfall data corresponding to El Alto Airport are shown. Between May and August, accumulated rain is small 

in comparison to that observed between November and February. In particular, January is the month with the highest 

percentage of rainy days, i.e. days where precipitation is observed. As it is pointed out in [5], April can be considered as 

a transition month between rainy and non-rainy seasons, and, in the opposite way, October and November represent a 

change from non-rainy to rainy seasons. Following this observations, for the purpose of this study, wet and dry seasons 

have been identified in the following way: 

 

� Rainy (wet) season: November to March 

� Non-rainy (dry) season: April to October 
 
 
3. DATA PROCESSING METHODOLOGY 

 
SENAMHI distributes radiosoundings by free to authorized users, including universities, research centers and 

governmental offices. Quality check (QC) of the data was performed with the aim of discarding invalid vertical 

meteorological profiles. According to the QC procedure implemented, radiosondes were flagged as non-useful if one of 

the following criteria was verified: 

 

� Incorrect temperature data. 

� Incorrect pressure data. 

� Incorrect relative humidity data. 

� Equal height levels. 

� Heights reach an altitude below 15000 meters. 

 

After identifying and discarding non-useful radiosoundings, about 98.5 % of them have been considered as valid, i.e. a 

total of 722 radiosoundings. A valuable characteristic of these meteorological profiles launched at El Alto Airport is 

their vertical resolution, ranging between 10 – 15 meters, which provides a good physical description of the atmospheric 

path. However, unfortunately, the presence of rain during radiosonde launchings was not assessed because data from 

on-site rain detection instruments were not available. Therefore, it is likely that some vertical profiles might correspond 

to instants where rainfall occurred, which could affect in a certain way our results. This fact is well-known in 

propagation studies and it is normally assumed that a radiosounding under the presence of rain happens with a very low 

probability.   
 

Data processing routines were implemented in order to estimate Integrated Liquid Water Content, L in mm, for each 

profile. This physical parameter describes the total amount of cloud liquid water. It keeps a straight relation with 

attenuation caused by clouds, Ac in dB, as seen in the method described in Section 3.2 of the ITU-R P.840 [4]. This 

method uses local data, either in the form of point measurements, e.g. using a multi-frequency radiometer, or 

estimations from vertical meteorological profiles. This procedure to estimate Ac is iteratively repeated for all valid 

radiosoundings. This general procedure is outlined in Figure 2.  
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Figure 2: General description of the procedure for obtaining cloud attenuation, combining the estimate of 

L from radiosoundings and the ITU-R P.840 method based on L data.  

 
Figure 3 shows a more detailed description of the procedure above described. Once a radiosounding is flagged as valid, 

vertical interpolation is carried out in order to obtain atmospheric pressure, P in hPa, and relative humidity, RH, profiles 

with uniform number of layers of 10-m thickness. Both profiles are used to calculate the critical humidity or threshold 

function, Uc for every radiosounding. Different functions, summarized in Section 3, are proposed in the Decker, 

Salonen and Salonen08 models. The presence of a cloud layer along the atmospheric path is detected in those 10-m 

layers where RH is higher than the corresponding Uc threshold. An example of this detection procedure, corresponding 

to a radiosonde launched in February 2nd, 2018, is shown in Figure 4 where a RH profile and UC functions are plotted. 

As it can be seen, the detection thresholds can notably vary one from each other, so the vertical structure of a detected 

cloud will be also quite different from one model to another. Finally, the liquid water content, wl in g/m
3
, of each layer 

is calculated using expressions provided in the models and the value of L is obtained by vertical linear interpolation.   

. 

 
 

Figure 3: Flow diagram of the algorithm used for detecting the presence of cloud layers and estimating cloud 

attenuation from vertical meteorological profiles in combination with cloud detection models. 
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Figure 4: Comparison between Decker, Salonen and Salonen08 relative humidity thresholds 

RH profiles corresponding to El Alto (La Paz), February 2nd, 2018, 12:00 UTC. 
 

 

4. CLOUD DETECTION AND CLOUD ATTENUATION MODELS  
 

4.1. Empirical methods of cloud detection and estimation of liquid water content 
 

Several models for detecting clouds and calculating the amount of liquid water content and ice water content, �� in 

g/m
3
, into a cloud have been proposed in the technical literature. Among them, some has been extensively used in 

satellite propagation studies, i.e. the Salonen model. Below, a brief description of the models implemented in the 

present work. References to the original papers with further details are included for the interested reader. 
 

� Salonen model: Developed by Salonen and Uppala [6] and also known as the Teknillinen KorkeaKoulu (TKK) 

model, it was tested in several sites located in Europe. The relative humidity threshold �� at each atmospheric layer 

depends on the ratio between its atmospheric pressure and that at surface level. Once a cloud layer is detected �� is 

estimated using as input data the cloud base height and the T profile.  

� Salonen08 model: This model was developed by Mattioli et. al. [7] using data from meteorological instruments from 

the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plaints (SGP) in US. It proposes a new 

set of parameters for the expressions given by Salonen in [6] for the calculation of both �� and wl. This set was the 

result of a tuning procedure using a laser ceilometer for accurate detection of the presence of clouds. 

� CldMod model: Also proposed by Mattioli, et. al. in [7], this model uses the function �� given by the Salonen08 

model, but develops a new expression for calculating the value of wl in each cloud layer. In this new procedure, the 

calculation of the liquid water content is based on the altitude above the cloud base normalized respect to the cloud 

thickness and the relative humidity and temperature in the cloud layer. 

� Decker model: In this model proposed by Decker in [8], the function �� has a constant value equals to either 0.9 or 

0.95. For the purpose of this work, the threshold value of 0.9 was selected. In addition, an expression for ��is also 

proposed, where the liquid water content into a cloud layer is assumed to be constant with height and depends only 

on the cloud layer thickness. 

 

4.2. ITU-R approximate method based on local data of L 
 

This model, included in Section 3.2 of the ITU-R P.840, allows estimating Ac from local measurements or estimates of 

L, in combination with cloud liquid water specific attenuation coefficient, ��
∗ in dB/km/g/m

3
, as seen in the following 

expression: 

 

5º90º
sin

)15.273,(
*

≥≥= ϕ
ϕ

fLK
A l

c
    (1) 

 

where φ is the elevation angle. The value of ��
∗	is calculated by: 
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The imaginary part of the complex dielectric permittivity of water vapor 	" in (2), depends on the frequency and the 

temperature, as seen below: 
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and T is the liquid water temperature in (K). The relaxation frequencies in (3), in GHz, can be calculated by the 

following expressions: 
2)1(316)1(14620.20 −+−−= θθpf           (8) 

ps ff 8.39=                   (9) 

 

The parameter � is expressed as a relation between the real and imaginary part of ε, as seen below: 

''

'2

ε

ε
η

+
=       (10) 

where: 

( )[ ] ( )[ ] 22

21

2

10

/1/1
),(' ε

εεεε
ε +

+

−
+

+

−
=

sp ffff
Tf     (11) 

 
4.3. ITU-R approximate method based on global digital maps of  �
�� 
 

An alternative global model has also been proposed by the ITU-R which can be used to estimate statistics of cloud 

attenuation at any point on Earth, in absence of either local measurements or estimates of L, as seen in Section 4.2. The 

model uses worldwide digital maps of annual and monthly values of Lred, the total columnar content of liquid water 

reduced to a temperature of 273.15 K, in mm. These maps are derived from the climatic reanalysis ERA-40, whose 

spatial resolution is 1.125° ×  1.125°  with a temporal resolution of 1 hour. Using this input data, annual and monthly 

statistics of ��  can be estimated using the following expression: 

 

ϕsin

)15.273,( fKL
A lred

c =       (12)  

 

where cloud liquid water specific attenuation coefficient is given by: 
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5. RESULTS AND ANALYSIS  

 

5.1. Cloud detection  
 
Table 3 shows the results of the assessment of the 722 valid profiles using the four models described in Section 4.1. 

Before using the threshold function to detect the presence of clouds, profiles were classified according to the season: 

301 correspond to rainy season and 421 to non-rainy season. The percentages of events where L > 0 mm are roughly 

62.4% (Decker), 63.7% (Salonen), 53.4% (Salonen08) and 54.9% (CldMod) out of the total of radiosoundings. 

Although the percentages are reasonably close, differences are explained by the different formulations to calculate ��, 

as well as the method to estimate �� from one model to other  Although it is true that Salonen08 and CldMod use the 

same �� function which means that both models detect the same number of cloud layers, the method to calculate �� and 

��  are different, as can be verified in the references mentioned in Section 3.1. Furthermore, differences can be also 
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explained in the temperature value below which the presence of ice water is detected, i.e. L=0 mm, which is −20°C 
(Salonen and Salonen08), −30° C (Decker), −35°C (CldMod). 

 
TABLE 3 - NUMBER OF RADIOSOUNDINGS WITH L > 0 MM ESTIMATED BY DIFFERENT CLOUD 

DETECTION MODELS 
 

 
Number of radiosoundings 

Rainy season Non-rainy season Total 
Cloud Detection Model   301 421 722 

Decker  250 201 451 

Salonen  256 204 460 

Salonen08 224 162 386 

CldMod 227 170 397 

 

Table 3 provides also some interesting information. During rainy season, the percentage of events where clouds were 

detected are 83% (Decker), 85% (Salonen), 74.4% (Salonen08) and 75.4% (CldMod) out of the total of radiosoundings. 

From a statistical point of view there would be a high probability of presence of clouds at the radiosonde launching time 

(12:00 UTC) between November and March. On the other hand, during the months of non-rainy season, these 

percentages decrease to 47.7% (Decker), 48.4% (Salonen), 38.5% (Salonen08) and 40.3% (CldMod). 

 
5.2. Cloud attenuation 

 
Statistics of zenith cloud attenuation are the main output of this work. Cloud effects along a slant path depend on the 

geometry of the link, and can be obtained by dividing the corresponding zenith values by the sine of the elevation angle, 

also known as the cosecant law. In propagation studies, statistics of atmospheric impairments are commonly represented 

as Complementary Cumulative Distribution Functions (CCDF), e.g. the amount of cloud attenuation that is exceeded a 

given percentage of time during a period. Due to the low temporal availability of the measurements, i.e. one 

radiosounding per day at 12:00 UTC, statistics have been calculated using the number of radiosondeos given in Table 3 

for each cloud detection model, both taking into account the rainy and non-rainy seasons. 

 

Figure 5 shows the CCDFs of zenith cloud attenuation calculated at 20 GHz (Ka-band), 40 GHz (Q-band) and 75 GHz 

(W-band) during rainy seasons. For comparison purposes, it is also included the CCDF obtained with the ITU-R global 

method described in Section 4.3. In order to calculate seasonal cloud attenuation with this model monthly maps were 

used. As seen in Figure 5, as frequency increases, from 20 GHz to 75 GHz, the absorption effects of cloud liquid water 

droplets become higher, thus cloud attenuation increases. At low percentages of time such as 1%, attenuation exceeds 

approximately 0.15 dB, 0.55 dB and 1.3 dB, respectively, using either Salonen or Salonen08. Although both models 

exhibit these similar values at this percentage of time, discrepancies between them are observed above 1.5% of time, 

being Salonen model the one with higher attenuation with respect to Salonen08. On the other hand, Decker model 

estimates higher cloud attenuation, reaching 0.32 dB (20 GHz), 1.05 dB (40 GHz), and 2.6 dB (75 GHz) at 1% of time, 

and using CldMod model, 0.45 dB (20 GHz), 1.56 dB (40 GHz), and 3.8 dB (75 GHz) are obtained. Besides, statistics 

based on CldMod model approach better to the ones obtained using the ITU-R global model at the three frequencies. 

This does not happen with Salonen model, whose statistics are quite far from ITU-R model estimates. 

 

These previous statements have been quantitatively validated by calculating the mean value, 	 ,̅ and the RMS value, 

	���, of the absolute error 	( ) given by (14), where p is the percentage of time: 

 

)()()( ,, pApAp modelcITUc −=ε      (14) 

 

The results are shown in Tables 4 to 6. The lower error metrics are those obtained using CldMod model, next those of 

Decker model. These results are striking because, since the publication of the CldMod model, its use has not been 

usually reported in propagation studies. However, it is worth mentioning that the accuracy of digital maps at very high 

altitude sites should be assessed and could be at the origin of unexpected results. On the other hand, Tables 4 to 6 

confirm that the worst error metrics are obtained with Salonen and Salonen08 models.  

 



GARCIA et al. 

12                                     INVESTIGACIÓN & DESARROLLO, Vol. 21, No. 1: 5 – 15 (2021) 

 

 

Figure 5: CCDFs of zenith cloud attenuation during rainy season (2016-2019) by the ITU-R model based on L values 

and different cloud detection models (solid lines), and by approximate ITU-R model based on data of ERA-

40 (dashed line) for a) 20 GHz, b) 40 GHz and c) 75 GHz. 

 
TABLE 4 - MEAN AND RMS VALUES OF THE ABSOLUTE ERROR BETWEEN "#	$%&	'(�	"#	)*��+ AT 

20 GHZ IN RAINY SEASON 
 

  Cloud Detection Model 

Error metric (dB) Decker Salonen Salonen08 CldMod 

	 ̅ 0.027 0.079 0.095 -0.023 

	���	 0.027 0.074 0.087 0.044 
 

  

a)

) 

b)

) 

c)

) 
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TABLE 5 - MEAN AND RMS VALUES OF THE ABSOLUTE ERROR BETWEEN "#	$%&	'(�	"#	)*��+ AT 
40 GHZ IN RAINY SEASON 

 

  Cloud Detection Model 

Error metric (dB) Decker Salonen Salonen08 CldMod 

	 ̅ 0.119 0.297 0.351 -0.056 

	���  0.142 0.354 0.413 0.134 
 

TABLE 6 - MEAN AND RMS VALUES OF THE ABSOLUTE ERROR BETWEEN "#	$%&	'(�	"#	)*��+ AT 
75 GHZ IN RAINY SEASON 

 

  Cloud Detection Model 

Error metric (dB) Decker Salonen Salonen08 CldMod 

	 ̅ 0.392 0.836 0.968 -0.069 

	���  0.506 1.097 1.254 0.289 
 
To conclude, Figure 7 shows the CCDFs of zenith cloud attenuation calculated at the three selected frequencies during 

non-rainy seasons, using the four cloud detection models. Similarly, as shown previously, the CCDF obtained using      

ITU-R global model is also included for the sake of comparison. Cloud attenuation statistics exceeded 1% of time, 

during non-rainy periods; vary between 0.08 and 0.33 dB (20 GHz), 0.26 and 1.1 dB (40 GHz), and 0.62 and 2.6 dB (75 

GHz) in function of the cloud detection model. As it can be seen, the ITU-R estimates higher attenuation values with 

respect to those given by cloud detection models. Notwithstanding this fact, CldMod is still close to the ITU-R results 

as it was seen in the previous analysis for rainy season. In addition, Tables 7 to 9 summarize the results of the error 

analysis confirming that cloud attenuation statistics using CldMod has the lower values of 	 ̅and 	��� when compared 

to ITU-R global model. 
 

 
 
 

a)

) 

b)

) 
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Figure 6: Total CCDFs for the non-rainy season of �� values in zenith estimated by the ITU-R model based on L 

values and different cloud detection models (solid lines), and by approximate ITU-R model based on data of 

ERA-40 (dashed line) for a) 20 GHz, b) 40 GHz and c) 75 GHz. 
 

 
TABLE 7 - MEAN AND RMS VALUES OF THE ABSOLUTE ERROR BETWEEN "#	$%&	'(�	"#	)*��+ AT 20 

GHZ IN THE NON-RAINY SEASON 
 

  Cloud Detection Model 

Error metric (dB) Decker Salonen Salonen08 CldMod 

	 ̅ 0.036 0.067 0.077 0.007 

	���  0.041 0.078 0.093 0.038 

 
TABLE 8 - MEAN AND RMS VALUES OF THE ABSOLUTE ERROR BETWEEN "#	$%&	'(�	"#	)*��+ AT 40 

GHZ IN NON-RAINY SEASON 
 

  Cloud Detection Model 

Error metric (dB) Decker Salonen Salonen08 CldMod 

	 ̅ 0.144 0.245 0.279 0.047 

	���  0.198 0.329 0.377 0.108 

 
TABLE 9 - MEAN AND RMS VALUES OF THE ABSOLUTE ERROR BETWEEN "#	$%&	'(�	"#	)*��+ AT 75 

GHZ IN NON-RAINY SEASON 
 

  Cloud Detection Model 

Error metric (dB) Decker Salonen Salonen08 CldMod 

	 ̅ 0.434 0.672 0.748 0.195 

	���  0.630 0.982 1.100 0.333 
 

 
6. CONCLUSIONS 

 

Measuring cloud attenuation by experimental means using specialized instruments is neither an easy nor a usual task in 

slant-path propagation experiments. In the present work, a technique has been used to estimate statistics of cloud 

attenuation at 20, 40 and 75 GHz using vertical meteorological profiles collected in Bolivia at 4065 meters above mean 

sea level. To our knowledge, few studies have been published worldwide under such geographical conditions.  
 

Four different models have been implemented to perform this estimation, which in addition, has been carried out by 

considering rainy and non-rainy seasons. The results have been compared to the statistics given by the most recent 

version of the ITU-R cloud attenuation global model. As seen, cloud attenuation increases with frequency, which 

confirms the increasing that cloud bodies will have in future satellite communication systems, in Q and W band. In Ka 

band, the effect is less relevant. In rainy season the probability of presence of clouds is high, including precipitating 
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clouds which likely have important amount of liquid water content, thus, attenuation cause by clouds in this period is 

higher than in non-rainy season.  
 

An unexpected observation is that the CldMod model provides statistics which are closer to the ones obtained by the        

ITU-R global model. The Decker model presents bit more discrepancies, and Salonen and Salonen08 are quite far from 

the model recommended by the ITU-R. To date, CldMod model has been hardly used by propagation experimenters in 

similar studies using radiosoundings. However, this conclusion has to be carefully analyzed. The reader has to be aware 

that this result is a comparison of estimation models. Although the use of the ITU-R global model is recommended for 

using worldwide, it is based on digital maps extracted from ERA-40 NWP. The accuracy of the meteorological 

parameters found in that database, for high altitude sites, should be carefully assessed because could be at the origin of 

the results obtained in this study. 
 

To conclude, we believe that future works should continue assessing atmospheric propagation conditions in high 

altitude sites. In absence of connectivity in several towns and villages located in Andean regions in Latin America, 

satellite communications are still a viable solution, therefore, the understanding and characterization of propagation 

phenomena have to be improved. 
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