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ABSTRACT 
 

In this article we propose a new method based on wavelet transform and on neural networks to detect the maximum, 

onset and offset of electrocardiogram (ECG) characteristic waves. First, the wavelet transform modulus maxima is used 

to extract main information of the ECG. We use Neural Networks to discern important modulus maxima and with them, 

the maximum point of a wave is detected. Then, a forward and backward search is made to detect the onset and offset of 

ECG waves. The detection degree of the maximum of the waves was proved using the QT Database and compared with 

another method. As a result, the proposed method can work with several morphologies of highly noisy ECGs. 
 

RESUMEN 
 

En este artículo proponemos un nuevo método basado en transformada wavelet y redes neuronales para detectar el 

máximo, inicio y fin de las ondas características de un electrocardiograma (ECG). Primeramente, se utiliza el módulo 

máximo de la transformada wavelet para extraer la principal información del ECG. Utilizamos redes neuronales para 

discernir los módulos máximos importantes y con ellos, el punto máximo de la onda es detectado. Luego, una búsqueda 

hacia atrás y hacia adelante es realizada para detectar el inicio y fin de las ondas del ECG. El grado de detección de 

máximos de las ondas ha sido probado utilizando la Base de Datos QT y comparado con otro método. Los resultados 

muestran que el método propuesto puede ser utilizado para varias morfologías de ECG con alto grado de ruido de 

fondo.  
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1. INTRODUCTION 
 

In spite of at the present time there are more complex and expensive cardiac tests; the electrocardiogram (ECG) is still 

the most trustable 

tool to confirm acute myocardial infarction. The ECG quickly warns about the treatment needed to 

save a live. There is no proof that equals the ECG in the diagnosis of arrhythmias, pericarditis and myocardial ischemia   

[4]. 

  

The automatic detection of amplitude and duration time of the ECG waves is important for automatic interpretation of 

the ECG. A good performance of an automatic ECG interpretation system depends heavily upon the accurate and 

reliable detection of the characteristic points of the electrocardiogram. 
 

In order to calculate the amplitude and duration time of the ECG waves it is necessary to detect the time of occurrence 

of the maximums, onset and offset of the waves. In this study, we present a novel method based on the wavelet 

transform and on supervised neural networks to detect the maximums of the ECG waves (P, QRS, T and U), and 

another method for detecting the onsets and offsets of these waves. 
 

When trying to detect these characteristics points (manually or automatically) we have to deal with several problems. 

The main difficulties are: non-stationary or not well defined waveform morphologies, absence of some waves, 

ambiguity when defining where the waveform boundaries should be marked (this can also be a problem for expert 

cardiologists) [1, 3] and mostly, presence of noise produced by the power line interference, poor electrode contact, 

patient movement, lungs movement [2] and quantification error. This problem is important because the ECG frequency 

band generally overlaps the frequency band of the noise [12]. 
 

In the next section we give an introduction to the ECG, to the wavelet transform and to neural networks, specially to the 

multilayer perceptron. Then we present a method for detecting the ECG waves maximum point and a method for 
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detecting the onsets and offsets of these waves. Next we apply a test to the maximum point detection method and show 

its results. Finally we present a discussion and conclusions of the methods. 
 

 

2. THEORY 
 

A. The Electrocardiogram 
 

The ECG is the graphical representation of the potential difference between two points on a body surface [5]. It is 

formed by waves that represent the depolarization (that produces the contraction of the cardiac muscle) and 

repolarization (that produces the dilatation of the cardiac muscle) of the myocardium. These waves are the P-wave 

formed by depolarization of the atria, QRS complex formed by depolarization of the ventricle, T-wave formed by 

repolarization of the ventricles and U-wave which origin is unknown (see Figure 1). 
 
 

 
Figure 1 – ECG signal. 

 

B. Wavelet Transform 
 

The Fourier transform was used to analyze the ECG and other biological signals. However, the Fourier transform shows 

some problems in the analysis of signals, for instance, it does not inform when the frequency components act and it is 

affected by Gibbs’ phenomenon [17]. The wavelet transform is an alternative signal representation that can handle these 

problems. 
 

Wavelet transform is a linear operation that decomposes a signal into components that appears in different scales (or 

resolutions). This decomposition is performed by the dilatation, contraction and displacement of a single function called 

mother wavelet y. When this function is dilated, analyzes low-frequency components; on the contrary, when it is 

contracted, it analyzes high-frequency components. The wavelet transform of a function )(2)( Ltf   is defined by  

 

  dtftfW sts 




 )()()( *

,      (1) 

 

where * denotes the complex conjugate, s is the scale parameter, and t,s is a scaled version of the mother wavelet 

defined by: 
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Another way to represent formula (1) is using the definition of the convolution is: 
 

)()()( , ttftfW sts 
 

 

To be a mother wavelet, a function (t) must satisfy [17]: 
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For a particular class of wavelets, the scale parameter can be sampled along the dyadic sequence uj

j
)2( , without 

modifying the overall properties of the transform [14]. Any wavelet satisfying equation (2) is called dyadic wavelet.  
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We also call dyadic wavelet transform the sequence of functions [14]: 
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If the mother wavelet 
(t) is the first derivative of a smoothing function
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We denote s(t)=(1/s)(t/s) the dilatation of (t) by a factor s. Since 
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The wavelet transform Ws
1
f(t) is proportional to the first derivative of f(t) smoothed by s(t) [15]. Therefore, the zero-

crossing of a wavelet transform indicates the location of the signal sharper variation points [15]. 

 

Mallat [15] defines a modulus maximum as any point (s, t0) such that    0tfWtfW ss   when t belongs to either right 

or left neighborhood of t0, and    0tfWtfW ss   when t belongs to the other side of the neighborhood of t0. All 

singularities of a signal can be located by following the curve line that connects all modulus maximum and finding the 

time when the wavelet transform is zero. Furthermore, a signal can be reconstructed, with a signal to error ration of the 

order of 40 dB, only using its modulus maximum in dyadic scale [15]. 

 

C. Neural Networks 

 

An artificial neural network is a data processing system consisting of a large number of simple processing elements 

called neurons, usually organized in a sequence of layers and interconnected through weights. Neural Networks 

architecture is inspired by the structure of cerebral cortex portion of the brain. Hence neural networks are often capable 

of doing things that humans do well, but conventional computers often do poorly [18]. 

 

Each neuron receives one or more inputs and produces an output according to its inputs, its connection value (weights) 

and its own transfer function. In many of the neural networks, to get the output of a neuron the transfer function is 

evaluated with the sum of its inputs multiplied by its connection weights. 

 

The operation of a neural network involves two processes: learning and recall. Learning is the process of adapting the 

connection weights in response to stimuli presented at the input of the neural network. Recall is the process of accepting 

an input and producing a response determined by the learning of the network [18]. 

 

Commonly, in learning process, neural networks are adjusted, or trained, so that a particular input leads to a specific 

target output. With this purpose the network is adjusted, based on a comparison of the output and the target, until the 

network output matches the target. Typically many such input/target pairs are used, in supervised learning, to train a 

network [11]. 

                                                 
1
 A smoothing function is the impulse response of a low-pass filter. The convolution of a function with a smoothing function attenuates part of its 

high frequencies without modifying the lowest frequencies and hence smoothes.  
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One of the most common neural network types is the multilayer perceptron. In this neural network each layer of 

neurons is only connected with the next layer of neurons. The output ai,j of the j-th neuron in layer i (Ni,j, for 1, ji ) 

is: 


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where 
k

iiw 1,   is the weight of the connection between neuron Ni,j and Ni-1,k, fi,j is the transfer function of neuron Ni,j, ni-1 is 

the number of neurons in layer i-1, bi,j, called bias, is the weight of an input that always equals 1, and its task is to 

facilitate the learning and to give more versatility  to the network. Layer zero makes reference to the inputs of the neural 

network, and the outputs of the last layer correspond to the outputs of the network (see Figure 1). 
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Figure 1 - Multilayer perceptron with 4 inputs, 3 layers and 3 neurons in each layer. 

A new input in a properly trained multilayer perceptron leads to an output similar to the correct output for an input used 

in training that is similar to the new input being presented (generalization property) [11, 1]. 

 

In pattern recognition, multilayer perceptrons are fed with features of some pattern that we want to classify; the output 

of the network represents the pattern to which the pattern belongs. Experience shows that neural networks are very good 

pattern recognizers which also have the ability to learn and build unique structures for a particular problem [18].  
 

 

3. THE METHOD 
 

A joint time-frequency (or time-scale) representation of the signal is needed in order to revel the information “hidden” 

in the frequency domain. No present time-frequency representations can solve all problems [16]. The shot-time Fourier 

transform has poor time and frequency resolution [6]. The Wigner-Ville distribution revels too much confusing 

information because of the cross-terms [6].  Wavelet transform will work well when time-frequency components are 

narrow in frequency and prolonged in time for low frequencies, but narrow in time and broad in frequency for high 

frequencies, such as the case of the ECG signal [16]. For this reason the wavelet transform gives useful information 

about the ECG [6]. 

 

Let f(t) be the function that defines the signal of the ECG. In this work, we choose the wavelet transform Wsf(t), as time-

scale (time-frequency) representation; being the mother wavelet the first derivative of the Gaussian smoothing function. 

The filters that form these wavelets (see Table 1) almost do not overlap with the spectrum of the ECG noise [13]. 
 

TABLE 1 - PASS BANDS OF WAVELET FILTERS [13] 

Scale Lower 3 dB 

Frequwency [Hz] 

Upper 3 dB 

Frequency [Hz] 

2
1
 31.5 80.0 

2
2
 15.6 42.5 

2
3
 7.0 22.0 



A NEW METHOD FOR AUTOMATIC DETECTION OF THE ELECTROCARDIOGRAM… 

UPB - INVESTIGACIÓN & DESARROLLO, No. 3, Vol. 1: 5 – 14 (2003)                9 

2
4
 4.10 12.7 

 
Figure 2 shows a scheme of the ECG and some of its dyadic wavelet transforms.  From Figure2 a) we can observe that 

waves P, T and U form a pair of modulus maximum in each scale. Figure 2b), which represents the QRS complex 

shows that waves Q and S form an additional modulus maximum each one. This figure also shows that when the ECG 

wave has its maximum, the wavelet transform is zero, and when ECG wave has its onset and offset the wavelet 

transform is almost zero. Therefore, in order to find a characteristic wave of the ECG, we have to find a pair of modulus 

maximum produced by the wave. 
 

 

Li et al. [14] and Sahambi et al. [12] use a threshold-based method to recognize which modulus maximum form a ECG 

wave, however this method can confuse some waves [1]. For example, these methods might not distinguish a decrement 

ST segment from an inverted T wave. 
 

In this work, we propose a method that uses supervised neural networks to discern which modulus maximum are 

formed by ECG waves, and with them the maximum point of a ECG wave is detected. A method similar to those of Li 

[9] and Sahambi [12] is also proposed to detect the onset and offset of ECG waves. 

 

 f(t)

W2
1 f(t)
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2 f(t)
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(a)                  (b)
 

Figure 2 - ECG scheme and some of its dyadic wavelet transforms. Dots represent 

the modulus maximum. (a) P-, T- or U-wave scheme. (b) QRS complex 

scheme. 

 

A. Method for detection of the maximum point 

 

To detect the maximum point of the ECG waves we subtract to the ECG signal f(t) its average, then we calculate the 

wavelet transform of the new signal and normalize its amplitude such as most of the transform oscillates between two 

well-known values. We call wsf(t) to this normalized-amplitude transform. 

 

Let s

in , i=1..I
s
 be the sequence of not-so-near modulus maximum of f(t) in scale s, where I

s
 is the number of not-so-near 

modulus maximum in scale s, and where two modulus maximum are not so near if the Euclidean distance between them 

is bigger than a constant . This constant was experimentally determined; however a variation in its value does not 

change considerably the results. 

We choose a segment of l not-so-near modulus maximum  s

kn , s

kn 1 , …, s

lkn 1  and then we calculate the neural network 
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jn is defined in formula (3), and 
s
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modulus maximum and is defined such as between modulus maximum 
s

pn  and 
s

pn 1  we want to prove if exists a 

maximum of a ECG wave.  
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where  is: 
 

2

1

s

p

s

p nn 
  

 

The output (target) of the neural network will be 1 or almost 1 if between time s

pn  and s

pn 1  exists the characteristic 

point we are looking for. Otherwise, it will be -1 or almost -1. Thus, if the output of the neural network is 1 or almost 1, 

we can suppose that s

pn  is the first modulus maximum formed by the wave and s

pn 1  is the second. A scheme of the 

method is found in Figure 3. 
 

Once we know which modulus maximum are formed by an ECG wave, the maximum of the wave is located in the time 

where wsf(t) is zero. In this way the whole ECG is analyzed. 
 

So far, we have presented the general version of the method; next we explain the method to detect the P, T and U waves 

and the QRS complex. 
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Figure 3 - T wave maximum point detection scheme. 

 

1) Detection of the P, T and U maximum points 
 

While the P, T and U waves power spectra lie in the range of 0.5 Hz to 10 Hz [12], low - frequency noise has a 

frequency of 0.5 Hz to 7 Hz [12]. In order to avoid errors due to noise, we select scale 2
3
 (see Table 1). For detecting 

the P, T or U waves, we use the previously explained method with l=5 modulus maximum in scale 2
3
. 

 

2) Detection of the QRS maximum point 
 

The frequency of the QRS complex lies between 3 Hz and 40 Hz [12]. However, none of the filters that forms this 

wavelet transform covers this broad band; therefore, a double proof of the method is needed. In the first proof, using 

l
R
=4 modulus maximum in scale 2

4
, we detect the possibility of finding a maximum of the QRS complex. If we have 
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this possibility, a second proof of the method is used with l
R
=6 modulus maximum in scale 2

1
. If this second proof is 

right, we seek the zero-crossing of wsf(t) to find the QRS maximum. 
 

3) Why the function ? 
 

At first glance, it would seem more logic to use the amplitude of the modulus maximum, instead of the function , as 

the inputs of the neural network, because what we want with the neural networks is to detect which pair of modulus 

maximum is formed by a characteristic ECG wave and because we could compare the work of the neural networks with 

the thresholds of other methods [14, 12]. However, using the modulus maximum amplitude, the neural network would 

be excessively sensible to this amplitude and it would be harder to train it. 

To fix these problems, we use function  which represents the angle that forms the time axe with a straight line that 

goes from (
s
jn , wf(

s
jn )) to (, 0), where  is the average time between s

pn  and s

pn 1 . More than classifying angles, 

what we pretend with the angle  is to make a non-linear transformation of the modulus maximum amplitude, such as 

for large amplitudes of the modulus maximum we obtain a value similar to that we would get if the modulus maximum 

would be very large. Thus, the excessive sensibility of the neural network to modulus maximum amplitude is eliminated 

and the neural network can be trained more easily. 

 

4) Method for detection of the onset and offset of the ECG waves 

 

The previously explained method could be used to detect the onset and offset of P, QRS, T and U waves. However, in 

this case, training the neural networks is much more difficult because manual annotations are not exact enough. But, an 

easier method could be devised to find this characteristic points considering that the onset of a wave is a little earlier 

than its maximum point and its offset is a little later. 

 

To detect the onset of the ECG waves, a backward search in wsf(t) (in scale 2
1
 for the QRS complex and in scale 2

2
 for 

the other waves) is made from the first modulus maximum
s

jn  that generated the signal to the previous modulus 

maximum 
s

jn 1 , until a time t is reached where |wsf(t)| is less than 6% of amplitude of the first modulus maximum that 

generated the wave. If this condition is not accomplished before reaching 
s

jn 1 , the onset of the wave is in the time 

where wsf(t) has smaller absolute value between s

jn  and 
s

jn 1 . However, if s

jn  and 
s

jn 1  are too close, i.e. their time 

difference is less than , wsf(
s

jn ) and wsf(
s

jn 1 ) have the same sign and |wsf(
s

jn 1 )| is bigger than ½|wsf(
s

jn )|, it means 

that s

jn  or 
s

jn 1   is a noise-generated modulus maximum that should be discarded decreasing j in one. In this way, 
s

jn  is 

discarded until 
s

jn  and 
s

jn 1  are not too close. Nevertheless, if we consider a QRS complex with Q wave, we have to 

discard the modulus maximum formed by this wave, i.e. decrement j in 1. To prove if a QRS complex has Q wave we 

have to verify if wsf(
s

jn ) and wsf(
s

jn 1 ) have the same sign or if the time difference between s

jn  and 
s

jn 1  is bigger than 

. Experimentally, we have determined that an adequate value for  and  is 8 ms. 

 

In order to detect the offset of the ECG waves, we used a forward search similar to that of the onset, starting from the s 

second modulus maximum formed by an ECG wave. 

 

 

4. RESULTS 
 

To validate the method for detecting the maximum point of the ECG waves proposed in this work, we developed a test 

based on 57 single-lead ECG from QT Database [7].  The QT database consists of 105 fifteen-minute excerpts of two-

channel ECG Holter recordings. The QT database includes electrocardiograms which were chosen to represent a wide 

variety of QRS and ST-T morphologies in order to challenge QT detection algorithms with real-world variability [8]. 
 

TABLE 2 - PARAMETERS USED TO DETECT THE T-WAVE 

Parameter Value 

Neural network type Multilayer 

Perceptron 

Number of layers in the neural network 2 

Transfer function of the first layer Tansig [11] 

Transfer function of the second layer Purelin [11] 

Number of neurons in the first layer 40 
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Scale of the wavelet transform 2
3
 

l (Number of  angles) 5 

Modulus maximum position. 3° 

 [samples] (minimum separation 

between samples) 

300 

wsf(t) amplitude  400 

Number of training epochs.  500 

 
ECGs from the QT Database were divided in approximately two halves. The first group was used to train the neural 

network with the parameters shown in Table 2. The second lead of the second group of 57 ECG was used to prove the 

method. Manual annotations were compared with the results of this method. If an automatic annotation is near to a 

manual annotation (8 samples) it is considered as a correct annotation, otherwise, if an automatic annotation is far from 

a manual annotation it is called false positive, but if an automatic annotation does not exist near to a manual one, it is 

called false negative. 

 

We measured the waves detection degree using % det defined as: 

 

 100*100det%
Tot

ff np 
      (1) 

 

where fp is the number of false positives, fn is the number of false negatives and Tot is the number of waves in the 

manual annotation. 

 

As sometimes formula (1) can doubly penalize one error, parameters Sensitivity (s) and Positive Predictivity (p) are 

commonly used [3]: 

nfn

n
S




 
 

pfn

n
P


  

 

where n is the number of right detections. 

 

Using these parameters, the detection degree of the T wave was calculated and compared with results produced by the 

method of Jané [3]. We only present the T-wave detection results (see Table 3) because the numerous morphologies that 

it can have are a challenge to the method. On the other hand, the P and U waves do not present so many morphologies, 

and the QRS complex is more evident and it is detected with a double proof of the method therefore, we expect better 

results.   

TABLE 3 - DETECTION RESULT OF THE T-WAVE OF THIS METHOD 

COMPARED WITH THE METHOD OF JANÉ 

Parameter This method Jané’s method. 

fp 1113 12152 

fn 5759 3857 

Number of waves 60287 60287 

%det 88.60 73.45 

S 0.911 0.926 

P 0.982 0.798 

% of ECGs that have a 

%det higher than 98.  

56.14 21.05 

 
In spite of ECGs in the QT Database are highly noisy, we added more noise in order to do a better measure of the noise 

tolerance of the proposed method. With this purpose, three kinds of noise from MIT-BIH Noise Stress Test Database 

[10] were added to the electrocardiograms that got a %det of 100. This noise is produced by baseline wander (BW), 

muscle artifact (MA), and electrode motion artifact (EM). Electrode motion is generally considered the most 

troublesome noise, since it can mimic the appearance of ectopic beats and cannot be removed easily by simple filters. 

The results of this test are shown in Table 4. 
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Table 4 shows that this method can work with ECGs with high levels of low and high frequency noise. For instance, 

signals with baseline wander (BW) which amplitude is two times bigger than the original ECG amplitude, or signals 

with muscle artifacts (MA) which amplitude are half or equal to the amplitude of the original ECG got good detection 

results. The analysis of signals with electrode motion artifact is much more difficult, but we got good results with noise 

amplitudes up to half the amplitude of original ECG. 

 

 

 

TABLE 4 - T-WAVE DETECTION PERCENTAGES WITH ADDED NOISE 

 %det 

Noise type BW EM MA 

SNR
2
 [db] -6 0 6 0 6 0 

SEL102 100.0 100.0 99.1 92.1 99.3 90.5 

SEL16483 99.5 100.0 99.4 86.5 99.4 86.6 

SEL16773 98.5 99.9 96.3 87.2 97.9 87.6 

SEL16795 98.2 99.6 95.9 59.2 92.8 69.5 

SEL17453 96.5 99.7 90.4 46.3 89.9 66.8 

SEL306 95.3 99.7 88.9 53.3 90.8 67.3 

SELE0405 99.3 99.8 98.7 89.2 98.8 90.8 

TOTAL 98.2 99.8 95.6 74.5 95.8 80.6 

 
 

5. DISCUSSION AND CONCLUSIONS 
 

A new method for the detection of the ECG characteristics points based on wavelet transform and on neural networks is 

presented. This method can work with several ECG morphologies. However, to obtain good results we have to train the 

neural networks with as many ECG as possible in order to reduce the generalization error of the neural networks. But it 

is not possible to build an ECG database with all the morphologies simply because they are infinite. 

 

This problem has been solved in three ways. First, the neural networks are fed with modulus maximum information of 

only one or two scales of the wavelet transform. Consequently, much of the waveforms generated from high- and low-

frequency noise are discarded, since this noise is not present in the used scales. 

 

Second, this method analyses small segments of the ECG. Each segment can hold approximately one complete ECG 

wave. Since it is possible to form several ECG waveforms joining few kinds of ECG segments, the need of an 

extremely large training set is reduced. 

 

Finally, we trust in the neural network generalization capacity. Since the test presented in section 0 used a variety of 

ECGs, some in the training set and others in the test set, and due to the good results obtained, we can trust in the neural 

network generalization capability. However, to help the neural network and to obtain good results a larger training set 

should be used. 

 

As a result, we got a method that can work with several ECG morphologies, and that can be easily taught  to annotate 

ECG correctly according to the medical criteria. 

 

Another trouble that can exist is the presence of noise, however this method was designed in such a way that it can 

handle noisy ECG signals. Wavelet transform easily characterizes the ECG waves and differentiates noise; therefore, 

using the correct wavelet scale we can eliminate very high- and very low-frequency noise. Additionally, high frequency 

noise forms close modulus maximum, and the method does not accept close modulus maximum. On the contrary, low-

frequency noise forms only one modulus maximum (instead of two) in the analyzed segment, thus the neural network 

will not consider it. Finally, we use neural networks to determine which modulus maximum are generated by noise. As 

a result, this method can handle noisy ECG signals as shown in section 0. 
 

                                                 
2 Noise is added to the ECG supposing that originally is clean, such as the new signal has a signal to noise ratio, as indicated in table. 
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