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ABSTRACT 
 

The main objective of this paper is to perform a comparison of several curve-fitting methods for extraction of the modal 

parameters from response vibration measurements, and in particular the best damping estimates. Measurements were 

carried out on a steel beam to which a constrained layer had been added to make the damping more similar to that of 

vehicle structural components. Two shakers with different excitation signals, a periodic impulsive and a random signal, 

respectively, excited the structure, but after separation, only the random part was analysed for the results of this paper. 

This study compares a number of common curve fitting methods, viz: The Rational Fraction Polynomial Method, the 

Complex Exponential Method, the Complex Cepstrum Method, the Hilbert Envelope Method and the Ibrahim Time 

Domain method. The most accurate results for detection of the damping and natural frequencies were obtained by using 

the Ibrahim Time Domain Method, with the Rational Fraction Polynomial method very similar. The Hilbert Envelope 

method gave comparable damping estimates. The Cepstrum and Complex Exponential methods gave reasonable results 

for the frequencies, but not for the damping. 

 

RESUMEN 
 

El objetivo principal de este trabajo es realizar una comparación de varios métodos de ajuste de curvas para la 

extracción de los parámetros modales a partir de mediciones de vibración de respuesta y, en particular, definir las 

mejores estimaciones de amortiguación. Las mediciones se llevaron a cabo en una viga de acero y se adhirió una capa 

de material de amortiguación, esto para hacer que la amortiguación experimental sea similar a la de los componentes 

estructurales en los vehículos. Dos agitadores “skakers” con diferentes señales de excitación se aplicaron, una impulsiva 

periódica y una señal aleatoria, respectivamente. En este trabajo de investigación, después dela separación de las 

señales; sólo la señal aleatoria se utilizó para futuros análisis. Este estudio se realizó la comparación de métodos más 

comunes de ajuste de curvas: El método de la fracción racional de polinomio, el método de exponencial compleja, el 

Método Cepstrum Complejo, el método de Hilbert Envoluta y el método Ibrahim dominio de tiempo.  

Los resultados más precisos obtenidos para la detección de las frecuencias naturales y de amortiguación fue con el 

método de Ibrahim en el dominio de tiempo, y con resultados similares con el método de fracción racional de 

polinomio. El método de Hilbert Envoluta dio estimaciones de amortiguación comparables. El método de Cepstrum y el 

Método Exponencial Compleja dieron resultados comparativos para las frecuencias pero no para los valores de 

amortiguación. 

 

Keywords: Rational Fraction Polynomial, Complex Exponential, Complex Cepstrum, Hilbert Envelope, Ibrahim Time 

Domain Method. 

Palabras Clave: Fracción Racional de Polinomio, Exponencial Compleja, Cepstrum Complejo, Hilbert Envoluta y  

Método de Ibrahim en el Dominio de Tiempo. 

 

 

1. INTRODUCTION 

 

Due to the large amount of literature and algorithms currently available for curve fitting structural data, it has become 

difficult to determine the optimum method for each situation. Therefore, the main objective of this paper is to perform a 

comparison of several curve-fitting methods for extraction of the modal parameters from response vibration 

measurements, and in particular the best damping estimates. To define the poles, including frequency and damping, of a 

system, from the response vibration responses, has always been a difficult task.  

 

Damping exists in all vibratory systems whenever there is energy dissipation. For assembled metal structures most 

damping is at joints or in attached damping materials. For free vibration, the loss of energy from damping in the system 
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results in the decay of the amplitude of motion. In forced vibration, loss of energy is balanced by the energy supplied by 

the excitation. In either situation, the effect of damping is to remove energy from the system. In mathematical 

formulations the damping force is usually treated as viscous, and assumed proportional to velocity. However, this does 

not mean that the physical damping mechanism is viscous in nature; it is simply a convenient modelling method.  

 

In this work, measurements were carried out on a steel beam to which a constrained layer had been added to make the 

degree of damping more similar to that of vehicle structural components. Two shakers with different excitation signals, a 

periodic impulsive and a random signal, respectively, excited the structure. It had been demonstrated in previous research 

[1] that it was possible to consider each component separately, and gain information from each that together provides a 

better estimate of the system response. With a single periodic impulsive excitation, the periodic response could be used to 

determine the residues, or equivalently the zeros of the system Frequency Response Function (FRFs), but the lack of 

resolution gave poor damping estimates. More accurate pole frequency and damping estimates could be obtained from the 

random part, even where this resulted from multiple or distributed sources. The current comparison of analysis methods 

applies to the random part only. Where necessary, the system was considered to be minimum phase, meaning that only 

the log amplitude spectra were required. The following common curve fitting methods were used for the comparison: the 

Rational Fractional Polynomial method (RFPM), the Complex Exponential method (CEM), the Hilbert Envelope method 

(HEM), the Cepstrum method (CM) and the Ibrahim Time Domain method (ITDM). The flowchart of Fig. 1 shows the 

process used to identify the poles (including damping).  

 

 

 

 

 

 

 

Figure 1 - The flowchart of the analysis procedure. 
 

 

2. THEORETICAL BACKGROUND 
 

a) The Cepstrum Method (CM) 
 

Cepstrum analysis was first defined as far back as 1963 by Bogert et al [2]. It was proposed at that time as a better 

alternative to the autocorrelation function for the detection of echoes in seismic signals. The word cepstrum was coined 

by reversing the first syllable in the word spectrum. The cepstrum exists in a domain referred to as quefrency (reversal of 

the first syllable in frequency), which has units of time. In later years this method has had a variety of applications in 

areas such speech and image processing, and gear and reciprocating machine diagnostics. Generally the cepstrum is 

defined as the inverse Fourier transform of the logarithmic spectrum [3]. 
 

 ))]([log()( 1 kXFC        (1) 

 

where C is the complex cepstrum. 

  

The real cepstrum of a digital signal x(n) is defined as:  
 

   ))((ln)( kXidftnC        (2) 

 

with X(k) as the discrete Fourier transform (dft) of x(n) and idft as the inverse discrete Fourier transform. 

 

The complex cepstrum is defined as: 

( ) (ln ( ) arg( ( ))x n idf X f j X k


      (3) 
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Random component 
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RFPM CM HEM CEM ITDM 



EXTRACTION OF MODAL PARAMETERS… 

UPB - INVESTIGACIÓN & DESARROLLO, No. 4, Vol. 1: 5 – 12 (2004)           7 

which is actually real since the log amplitude is even and the phase is odd. Note that the complex cepstrum of a minimum 

phase function is causal and can be obtained from the real cepstrum by setting negative quefrency components to zero, 

and doubling positive quefrency components, since the phase of the spectrum is the Hilbert transform of the log 

amplitude [4]. Thus, in that case the phase does not have to be measured or unwrapped. This assumption was made in this 

paper, and used also to generate complex spectra from log amplitude spectra. To curve fit the cepstrum data and obtain 

the poles and zeros, the software developed earlier [5] was used. 

 

b) The Complex Exponential Method (CEM) 
 

The well-known curve-fitting algorithm called the Complex Exponential Method (CEM), or Prony Algorithm works in 

the time domain. The time series are represented as sums of complex exponential functions [6] representing impulse 

responses. 
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Here, Ak is the amplitude of the complex exponential, αk is the damping factor, Φk is the initial phase, Te is the sample 

interval, and fk is the natural frequency. The CEM algorithms are multi-step procedures: An AR (Autoregressive) fit is 

first performed, the roots are found corresponding to the AR coefficients for the complex exponential (frequency and 

damping) parameters. The roots are then filtered and least squares fitted for the complex amplitude parameters. The 

complex exponentials give the corresponding damping factors and the natural frequencies. The damping can be calculated 

by the following equation: 
 

                                                             ekk TzabsLn /))((            (7) 

 

c) The Hilbert Envelope Method (HEM) 
 

The complex exponentials of Equation (6) have an envelope defined by the first part, and as shown in Equation (7), the 

(negative of the) slope of the logarithm of the envelope defines the damping coefficient. Where the different natural 

frequency peaks are separated, they can be filtered out in the frequency domain and inverse transformed to give the 

equivalent single degree of freedom (SDOF) impulse response, from whose envelope the damping can be obtained. 

Figure 2 shows the impulse response of an SDOF system and how its envelope can be obtained by means of a Hilbert 

transform. In fact, if a one-sided spectrum is inverse transformed to the time domain, the resulting time signal is analytic, 

meaning that its imaginary part is automatically the Hilbert transform of the real part and its modulus is the envelope [3]. 

Since the Hilbert transform corresponds to a convolution with a hyperbolic function, it cannot produce a sudden step as 

illustrated in Fig. 2(b), but a little away from the initial part of the response the estimated envelope is accurate and its 

logarithm gives a straight line whose slope is the negative of the damping coefficient.  

 

d) The Ibrahim Time Domain Method (ITDM) 
 

This method was introduced in 1977 [8], and it has been widely used by the aerospace community for identification of 

modal parameters. Gao [9] presented an extensive research work using the ITD for extraction of modal parameters. The 

ITD method uses structural free response data to construct two response matrices with a certain time delay between them. 

The delay relationship is used to form an Eigen-Value Problem (EVP) [9]. The natural frequencies, damping factors and 

modes can be extracted by solving the EVP. The ITD method is based on structural free response data and can deal with 

different type of signals, such as from impact excitation, random decrement of random processes or from turning off of 

any type of continuous excitation. The ITD method allows an oversized mathematical model to provide an outlet for 

various types of noise contained in the measured response data. The use of an oversized model, however, gives rise to the 

difficulty of distinguishing true physical from computational modes. To overcome this, Gao put forward a mode-

distinguishing factor, the Mode Shape Coherence and Confidence Factor (MSCCF)[9]. It was found that this factor was 

very powerful in distinguishing true physical modes from noise modes and frequency folded and overlapped modes 

(where, because of aliasing the true angle of a pole in the z-plane, could be outside the range [0:π]). The reader is referred 

to [9] for a more detailed explanation. 
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Figure 2 - The Hilbert transform enables computation of the envelope of the Impulse-response function [7]. 

 

e) The Rational Fraction Polynomial Method (RFPM) 
 

The rational fraction form of a transfer function is the ratio of two polynomials, with the roots of the numerator giving the 

zeros, and the roots of the denominator giving the poles (Equation (8)). In general, the orders of the numerator and the 

denominator polynomials are independent of one another. The denominator is referred to as the characteristic polynomial 

of the system. By curve fitting FRF (frequency response vibration data) against the analytical form in Equation (8), and 

then solving for the roots of both the numerator and the characteristic polynomials, the zeros and poles (including 

damping) of the transfer function can be determined. Curve fitting in the RFPM consists of finding the unknown (ak, 

k=0,…m) and (bk, k=0…n) such that the error between the analytical expression (8) and the FRF is minimized over the 

chosen frequency range. To compensate for the effects of unmeasured out-of-band modes, extra zeros are typically added 

to the model, which helps to correct the residues when the conversion from a pole-zero to a pole-residue model is made 

[10]. 
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3. MEASUREMENT AND ANALYSIS 
 

Measurements were carried out on a steel beam 1275 mm by 75 mm by 10.3 mm. In order to increase the damping to be 

of the same order as in vehicle structures, a constrained layer was added to the beam, consisting of a brass shim attached 

by double-sided tape. The beam was supported on soft springs, so its behaviour in bending was effectively free-free. To 

generate simultaneous periodic impulsive excitation and broad-band random excitation, two shakers were used. To 

measure the responses several accelerometers were used. Data was recorded using a B&K Portable Pulse System and the 

post processing was performed in Matlab. The periodic impulse signal was provided via the Pulse System. The pulse 

shape was Gaussian, with a standard deviation of 0.2 ms to give a frequency range > 1 kHz. The period was set at 0.5s 

(giving a resolution of 2 Hz) with 500 repetitions. The measurement set-up can be seen in Figure 3. 

 

As reported in [1], the periodic response was extracted by synchronous averaging, and then subtracted from the total 

signal to give the response to the random excitation. The periodic response was used to estimate the residues of the 

frequency responses, but because of poor frequency resolution gave poor estimates of the damping, and only reasonable 

estimates of the natural frequencies. The random response was used to give better estimates of the system poles 

(frequency and damping) even though in general the random response may result from multiple or distributed inputs. This 

paper considers only the analysis of the random part of the response.  

 

An important issue with use of any curve fitter is how to compensate the residual effects of out-of band modes since the 

measurements are always made over a limited frequency range. As a consequence, the measurements will typically 

contain the residual effects of resonance, which lie outside the frequency range of the curve-fitting. Regardless of whether 

a curve fitting method uses the time or frequency domain, the residual effects of out-of-band modes must be dealt with.  
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Figure 3 - Measurement set-up. 

 
RFPM offered a unique advantage that was not available with the CEM, for instance. With the RFPM, the out-of-band 

effects can be approximated by specifying additional terms for either the numerator or the denominator [10]. The 

Complex Exponential method almost always requires the use of extra modes in order to obtain valid results. The 

difficulty with using extra modes in the model is that the results must then separate out the “real” modes from the 

computational modes. The complex cepstrum uses an equalizer function (from a similar case or finite element model) in 

order to compensate for the out-of-band modes [5]. The Ibrahim time domain method uses the Mode Shape Coherence 

and Confidence Factor to distinguish the physical modes from computational modes [9]. This study used both simulated 

data and the experimental data. The simulated data can be seen in Figures 4 and 5. Figure 4 shows: a) The impulse 

response function, b) The log magnitudes of the mobilities of the individual modes, and c) The log magnitude of the 

overall mobility. Within the excitation frequency range of 0 Hz to 1024 Hz, six resonance frequencies are clearly seen. 

Figure 5 compares typical regenerated data with original analytical data. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4 - The analytical signal: a) The impulse response function; b) The individual 

log magnitudes of mobilities; c) The log magnitude of the overall mobility. 
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Figure 5 - The analytical and calculated signals: a) The log magnitudes of mobility; b) Analytical 

and calculated phases; c) Analytical and calculated Imaginary parts 
 

 

4. RESULTS AND DISCUSSION 
 

The results of the analysis of the simulated signals by the different methods can be seen in Table 1 and Table 2, and 

compared with the exact values for the simulated data.  

 

TABLE 1 - SUMMARISING THE RESULTS OF THE ESTIMATED FREQUENCIES AND THEIR 

CALCULATED ERRORS 

 CM CEM ITM RFPM 

Freq.  

[Hz] 

Freq. 

[Hz] 

Error 

[%] 

Freq. 

[Hz] 

Error 

[%] 

Freq.  

[Hz] 

Error 

[%] 

Freq.  

[Hz] 

Error 

[%] 

150 148.271 1.153 151.610 1,073 150.07 0.047 150.070 0.047 

300 300.182 0.061 297.480 0.840 300.14 0.047 300.140 0.047 

350 346.657 0.955 352.120 0.606 350.16 0.046 350.170 0.049 

500 502.168 0.434 496.120 0.776 500.24 0.048 500.240 0.048 

700 699.925 0.011 702.580 0.369 700.36 0.051 700.340 0.049 

850 848.930 0.126 853.280 0.386 850.47 0.055 850.450 0.053 

 
TABLE 2: SUMMARISING THE RESULTS OF THE ESTIMATED DAMPING AND THEIR CALCULATED 

ERRORS 

 CM CEM ITM RFPM HEM 

Damp.* 

[%] 

Damp. 

[%] 

Error 

[%] 

Damp. 

[%] 

Error 

[%] 

Damp. 

[%] 

Error 

[%] 

Damp. 

[%] 

Error 

[%] 

Damp. 

[%] 

Error 

[%] 

1 0.480 52.000 2.462 146.200 0.999 0.100 1.002 0.200 1.020 2.000 

0.82 0.330 59.756 0.377 54.024 0.819 0.122 0.825 0.610 0.800 2.439 

0.73 0.270 63.014 0.769 5.342 0.729 0.137 0.733 0.411 0.760 4.110 

0.64 0.170 73.438 2.061 222.031 0.639 0.156 0.646 0.937 0.660 3.125 

0.55 0.140 74.545 1.125 104.545 0.549 0.182 0.557 1.273 0.570 3.636 

0.46 0.110 76.087 0.691 50.217 0.459 0.217 0.466 1.304 0.470 2.174 
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The most accurate results for detection of the damping and frequencies were obtained by using the Ibrahim Time Domain 

method with errors in both of the order of 0.1%. The Rational Fraction Polynomial method was only slightly inferior. The 

Hilbert Envelope method also gave good results for the damping (frequency values were simply read off from peaks in 

the frequency domain). The Complex Exponential and Cepstrum methods showed quite accurate results for the 

frequencies, but not for the damping. 

 

Table 3 shows the results for values of frequency and damping of the experimental measurements. The true results are of 

course not known. If on the basis of the simulated results, the ITDM is taken to be best, the RFPM and HEM seem to give 

reliable results (the latter for damping only). The CM and CEM give reasonable results for frequencies but poorer 

damping estimates. The damping results from the complex cepstrum are consistently lower than the others (as in Table 

2). Since the complex Cepstrum comprises complex exponential terms further damped by a 1/n hyperbolic term, it is 

possible that the “differential cepstrum” which does not have this further damping [5], may provide better results. This 

will be tested in the future. 

 

TABLE 3 - RESULTS OF THE EXPERIMENTAL DATA, POLES AND DAMPING 

 CM CEM ITM RFPM HEM 

Freq.* 

[Hz] 

Freq. 

Hz] 

Damp.** 

[%] 

Freq 

[Hz] 

Damp. 

[%] 

Freq 

[Hz] 

Damp. 

[%] 

Freq 

[Hz] 

Damp. 

[%] 

Freq 

[Hz] 

Damp. 

[%] 

32 32.112 3.093 30.068 4.988 32.226 6.820 33.602 6.530 32 7.092 

88 89.694 1.111 92.971 3.074 88.715 2.310 89.674 2.340 88 2.313 

174 173.927 0.574 175.595 0.466 173.901 1,170 174.849 1.180 174 1.186 

289 288.342 0.346 288.760 0.248 287.402 0.730 288.428 0.727 289 0.738 

315 314.005 0.318 300.154 0.511 313.718 0.680 314.703 0.673 315 0.663 

429 429.233 0.232 425.677 0.847 429.129 0.500 430.119 0.502 429 0.499 

598 599.535 0.166 592.154 0.938 599.567 0.400 600.556 0.404 598 0.363 

629 628.913 0.158 625.304 0.575 628.928 0.360 629.928 0.357 629 0.378 

798 797.923 0.125 797.669 0.347 797.986 0.280 798.989 0.283 798 0.284 

949 947.429 0.105 947.669 0.205 947.593 0.240 948.582 0.241 949 0.240 

- The HEM analysed the envelope only and that is why only the damping was estimated.  

*Frequency; ** Damping 

 

 

5. CONCLUSIONS 

 

The most accurate results for detection of the damping and frequency values were obtained by using the Ibrahim Time 

Domain method, with the Rational Fraction Polynomial method very similar, and the Hilbert Envelope method giving 

comparable damping estimates. The Cepstrum and Complex Exponential methods also gave reasonably accurate results 

for natural frequencies; but not for the damping.  
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