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ABSTRACT 
 

The cylinder pressure curve is a very important parameter for detection of malfunctioning of combustion process in 

diesel engines. It provides a considerable amount of information about the performance of the engine. The traditional 

method to get the cylinder pressure curve is to use a cylinder pressure transducer, which is inserted in the cylinder head 

of the engine. This method is both expensive because of the high cost of the transducer and lifetime limited due to the 

harsh working environment. Therefore, there is an increasing need of a new non-intrusive method, which can be applied 

for the reconstruction of the cylinder pressure. 

The main objective of this paper is to perform the reconstruction of the cylinder pressure curve from vibration 

measurements by using the Neural Network Method (NNM). The cylinder pressure data obtained with transducers on 

operating engines was simultaneously recorded with vibration data obtained with external accelerometers at Scania 

Acoustic Laboratory in Stockholm (Sweden). The measured data were used to train the Neural Networks (NN), 

thereafter a new data set of vibration signals was enter to the NNs to get the reconstructed cylinder pressure signal. 

Finally, the results showed high accuracy and precision. The standard deviation of the average maximum cylinder 

pressures (
MAX

P ) varied between 0.03 and 1.01 percent, much lower than those obtained with other methods i.e. 

Cepstrum Method and Multivariate Data Analysis (MVDA). The final goal to use the NNM for optimization of the 

combustion process and engine diagnostics was fulfilled. 

 

RESUMEN  
 

La curva de presión del cilindro es un parámetro muy importante para la detección del inadecuado funcionamiento del 

proceso de combustión en los motores diésel. Los parámetros proporcionan una cantidad considerable de información 

sobre el rendimiento del motor. El método tradicional para obtener la curva de presión del cilindro es utilizar un 

transductor de presión del cilindro, que se inserta en la culata del motor. Este método es caro debido al alto coste del 

transductor y la vida útil limitada debido al ambiente de trabajo duro del sensor. Por tanto, existe una necesidad 

creciente de un nuevo método no invasivo, que se puede aplicar para la reconstrucción de la presión del cilindro. 

El objetivo principal de este trabajo es llevar a cabo la reconstrucción de la curva de presión del cilindro utilizando 

mediciones de vibración y  el Método de Redes Neurales (MRN). Los datos de presión de los cilindros obtenidos con 

transductores en funcionamiento se registran de forma simultánea con los datos de vibración obtenidos con 

acelerómetros externos en el Laboratorio de Acústica de Scania en Estocolmo (Suecia). Los datos medidos se utilizan 

para entrenar las redes neuronales, a partir de entonces un nuevo conjunto de datos de señales de vibración ingresa al 

(MRN) para obtener la señal de presión del cilindro reconstruido.  

Finalmente, los resultados mostraron una alta exactitud y precisión. La desviación estándar de las presiones máximas 

(Pmax) de los cilindros varía entre 0,03 y 1,01 por ciento, muy inferior a los resultados obtenidos con otros métodos, es 

decir, Método Cepstrum y método de análisis de multivariables (MAMV). Se puede plantear que el objetivo final de 

este trabajo se cumplió al aplicar MRN para la reconstrucción de la curva de presión, y la posibilidad de aplicar los 

resultados en la optimización y diagnóstico del proceso de combustión del motor. 
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1. INTRODUCTION 

 

There are increasing demands to reduce the noise and exhaust emissions in Diesel engines, and the combustion process 

is the main parameter which can be able to reduce requirements by optimization of its performance [1]. Knowing the 

exact behavior of the combustion process, its optimization can easily be performed. There is a standard method to 

collect the cylinder pressure curve. A cylinder pressure transducer has to be inserted in the cylinder head of the engine. 

The use of cylinder pressure has several disadvantages such as high cost and limited lifetime due to the harsh work 

environment, and some times it could be very difficult to find a place to insert the cylinder transducer in the cylinder 
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head of the engine. Therefore, there is a great need of non-intrusive detection methods, by using accelerometers in order 

to reconstruct the cylinder pressure curve from response measurements [2].  

 

The main idea of this research project, Peña [5], was to use the Neural Network Method to reconstruct the cylinder 

pressure curve from the vibration response of the engine surface. NNM has never been used to solve this specific 

problem, so it is a completely new approach, even though it was already used for analyzing processes where it showed 

to be a versatile instrument in different fields (i.e. turbomachinery fault identification, vibration diagnostic system for 

rotation machinery and for detection of motor incipient fault detection [3], condition monitoring applications [4]).  

 

The data (cylinder pressure and vibration response) analysis was carried out by an extensive pre-processing of the data 

to reduce the noise, before it was introduced to a Generalized Regression Network [6] for the prediction of the source 

(cylinder pressure). The network was trained under a supervised learning algorithm (where the input signal data and the 

desired response were known). An external validation was also carried out to see the robustness and accuracy of the 

Neural Network Method. 

 

Finally, the reconstructed cylinder pressure curve showed a high accuracy. It is also important to mention that the 

obtained results do not change in accuracy and precision above 1600 rpm, where others methods failed i.e. Cepstrum 

Method and Multivariate Data Analysis MVDA [2], [7]. 

 

 

2. CYLINDER PRESSURE AND VIBRATION DATA 

 

The engine data recording was carried out at the Scania acoustic laboratory in Stockholm (Sweden). Four diesel 

engines, in line 6 cylinders, turbo charged, 11 liters, were used for the experiments. The instruments used were 

accelerometers, piezo electric transducers, a magnetic sensor and AVL recording. The maximum sampling frequency 

was 32.768 Hz. The tests were conducted using 6 piezoelectric accelerometers mounted firmly onto cylinder head bolts. 

These six accelerometers were used in order to collect the signals for each cylinder. An inductive magnetic sensor was 

connected to the flywheel to locate the position of the piston in the cylinder. Two water-cooled quartz, AVL, pressure 

transducers were used to make combustion pulse measurements, it was necessary to move around the transducer to 

collect data for all cylinders.  

 

The details of the experiment were extensively explained in an earlier paper [2]. In order to find the best measurements 

points in the diesel engine a coherence analysis was performed [2]. Figure 1 illustrates the holes where the transducers 

were inserted. It also shows the position of the magnetic sensor and the position of the accelerometers. The data 

processing was performed with Matlab
®
 signal processing toolbox 6.5. 

 

 

Figure 1 - Measurement Set-Up. 
 

 
 

3. NEURAL NETWORK METHOD 

 

The theoretical basis of neural networks was developed in 1943 by the neurophysiologist Warren McCulloch at the 

University of Illinois and the mathematician Walter Pitts at the University of Chicago. They studied the potential and 

capabilities of the interconnection of components based on a model of biological neurons. In 1954 Belmont Farley and 

Wesley Clark of the Massachusetts Institute of Technology succeeded in running the first simple neural network [7]. 

 

Accelerometers 

 

Cylinder pressure transducer 
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UPB - INVESTIGACIÓN & DESARROLLO, No 5, Vol. 1: 81 – 89 (2005)             83 

The primary appeal of neural networks is their ability to emulate the brain’s pattern-recognition skills. Since then, many 

different models and architectures have been developed and analyzed for a variety of applications. In 1986, the parallel 

distributed processing (PDP) group, Rumelhart and McClelland, published a series of results and algorithms that served 

as a catalyst for much of the subsequent research and applications of artificial neural networks in different engineering 

and scientific fields. The most important property of a neural network is its capacity to learn from the environment 

through by means of an interactive process of adjustments applied to its synaptic weights and bias levels. Ideally, the 

network becomes more knowledgeable about its environment after each iteration of the learning process. A trained 

neural network can be thought of as an "expert" in the category of information it has been given to analyze.  

 

A possible disadvantage of this technique is the black box character that might appear. During the process of training of 

the Neural Network, also during the reconstruction of the cylinder pressure, the internal procedures and operations are 

not made available in a tangible form. Although the network matrix with its mathematical weighting and biases can be 

shown, together with all of the applicable training algorithms which are fully mathematical described, the Neural 

Network is still less transparent than other formula based modeling techniques.  

 

Neural Network Analysis (NNA) has emerged as a powerful technique for modeling general input and output 

relationships and been used for many complicated tasks [8]. NNA can be used to learn to approximate any function and 

behave like associative memories using exemplar data that is representative of the desired task. NNA estimates a 

function without requiring a mathematical description of how the output functionally depends on the input as it ‘learns 

from examples’ or, more precisely, it learns from underlying input – output data mapping [8]. 

  

The neural network consists of the input layer of neurons (one neuron to each input), a hidden layer or several hidden 

layers of neurons and an output layer of one neuron for each output. A typical example can be seen in Figure 2. 

 

 

 

 

 

 

 

 

 
 

Figure 2 - Neural Network. 

 

3.1 Radial–basis functions network 

 

The design of a supervised neural network may be pursued in a variety of ways such as Back-Propagation and Radial–

Basis Function (RBF) [3]. Back Propagation’s algorithms are characterized for the design of a multilayer perceptron 

(under supervision) and may be viewed as the application of a recursive technique known in statistics as stochastic 

approximation. Radial Basis Function network has a complete different approach, it works by viewing the design of a 

neural network as a curve fitting (approximation) problem in a high-dimensional space. According to this point of view, 

learning is equivalent to finding a surface in a multidimensional space that provides a best fit to the training data, with 

the criterion for ”best fit” being measured in some statistical sense. Correspondingly, generalization is equivalent to the 

use of this multidimensional surface to interpolate the test data. Such a viewpoint is the motivation behind the method 

of radial-basis functions in the sense that it draws upon research work on traditional strict interpolation in a 

multidimensional space.  

 

In the context of a neural network, the hidden units provide a set of ”functions” that constitute an arbitrary ”basis” for 

the input patterns (vectors) when they are expanded into the hidden space, these functions are called radial–basis 

functions. Radial–basis functions were first introduced in the solution of the real multivariate interpolation problem. 

The construction of a RBF network, in its most basic form, involves three layers with entirely different roles. The input 

layer is made up of source nodes (sensory units) that connect the network to its environment. The second layer, the only 

hidden layer in the network, applies a nonlinear transformation from the input space to the hidden space, in most 

Input Layer Hidden Layer I Output Layer Hidden Layer II 

X1 

X2 

Xn 

Y1 

Y2 
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applications the hidden space is of high dimensionality. The output layer is linear, supplying the response of the 

network to the activation pattern (signal) applied to the input layer.  

 

A mathematical justification for the rationale of a nonlinear transformation followed by a linear transformation may be 

traced back to an early paper by Cover [9]. According to this paper, a pattern-classification problem cast in a high–

dimensional space is more likely to be linearly separable than in a low–dimensional space hence the reason for 

frequently making the dimension of the hidden space in a RBF network high. Another important point is the fact that 

the dimension of the hidden space is directly related to the capacity of the network to approximate a smooth input–

output mapping by Niyogi and Girosi [10], the higher the dimension of the hidden space, the more accurate the 

approximation will be. Radial basis networks may require more neurons than standard feedforward back propagation 

networks, but often they can be designed in a fraction of the time it takes to train standard feed-forward networks. They 

work best when many training vectors are available.  

 

3.2 Generalized Regression Neural Network (GRNN) 

 

GRNN is among radial basis networks and has recently found many applications in regression and function estimation 

processes. It has been shown that given a sufficient number of neurons in the hidden layer, a GRNN can approximate a 

continuous function to an arbitrary precision.  

 

The standard supervised network architectures (multilayer perceptrons and radial basis functions) infer a parameterized 

model (the weights forming the parameters) from available training data. The parameterized model (the network) is 

usually much smaller than the training data and can be executed quite quickly, although the time taken to train the 

model may be long. An alternative approach is to model the function more or less directly from the training data. This 

has the advantage that there is no need for training (or, at most, one can use "training" that is actually very simple and 

consisting of little more than changing the form in which the training data are held). Bayesian networks, often called 

Generalized Regression Neural Networks (GRNNs), are such methods. Regression networks train extremely fast. 

 

The architecture for the GRNN is shown in Figure 3. It was created a two-layer network. It is similar to the radial basis 

network, but has a slightly different second layer. Here the nprod box shown (code function in Matlab, normprod) 

produces s
2
 elements in vector n

2
. Each element is the dot product of a row of a vector LW 

2,1
 and the input vector a

1
, all 

normalized by the sum of the elements of a
1
. Further information on GRNN can be found in Matlab

®
 Manual [6].  

 

 
Figure 3 - Generalized regression network architecture [6]. 

 
There are many alternative forms of neural network systems and there are many ways NNA can be applied to a given 

problem. In this specific case, there is a vibration signal and a pressure signal, the goal is to teach a neural network how 

to reconstruct this pressure signal based on a vibration input. This case fits in the function approximation since there is a 

need to obtain a transfer function capable of converting the vibration on the engine surface into the cylinder pressure 

curve, so that The Radial Basis Function Network with the Generalized Regression Network was used.  

 

 

4. ANALYSIS PROCEDURE 

 

Before the introduction of data into NNM, an extensive pre-processing has to be applied to the row data, Figure 4.  
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Figure 4 - The flow chart for the reconstruction of the cylinder pressure. 

 
In order to reduce both the noise and the effects of overlapping of adjacent cylinders, a tailored window was applied to 

the pressure signal [2]. Figure 5 shows a typical example of the signals that were measured. Even if the signals were 

measured in the same running conditions (10% load and 800 rpm.), most of the variation can be seen between the peaks. 

This variation may introduce some errors in the Neural Network Modeling. To reduce this variation the vibration data 

were changed from acceleration to velocity. So that the input data into the neural network method was the velocity 

instead of the acceleration signal. The integrated data results can be seen in Figure 6, which shows smoother curves. 
 

 

 

Figure 5 - Acceleration response curves. 

 

 
Figure 6 – Velocity response curves. 
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The cylinder pressure data signal is also filtered out with a tailored windowing combination between the Hamming 

window and the rectangular window [2]. In order to further reduce the noise in the input data, the pressure signals were 

submitted to a zero-phase digital filter which performs a zero-phase digital filtering by processing the input data in both 

the forward and reverse directions. After filtering in the forward direction, it reverses the filtered sequence and runs it 

back through the filter [11]. The resulting sequence has precisely zero-phase distortion and double filter order, see 

Figure 7a and 7b. 

 

Finally, the filtered data was introduced to the NNM and the analysis process was performed using the Generalized 

Regression Neural Network. 

 

 

5. RESULTS 

 

The total amount of data signals for each cylinder and for each engine running conditions is 30. These signals were 

paired and a mean value taken, so as it became 15 data signals for each cylinder and for each engine running condition. 

From these 15 signals, 10 signals from engine 1 were used to train the network. The 5 remaining signals from engine 1 

and the 15 signals from engine 2 were used for the external validation process. In order to reduce the variations between 

the signals the input data set has been normalized in the range of (-1, 1).  

 

Finally, the pre-processed signals were ready to start the network training by using the learning algorithm generalized 

regression neural network (GRNN). Ten signals from engine 1 and cylinder 1 were used.  

 

The results of the simulation process showed consistency, however they did not reproduce the cylinder pressure curve. 

An equalizer function was required. The equalizer function was obtained by using the difference of the average 

measured and the average reconstructed of the cylinder pressure curves. Six equalizer functions were needed, one for 

each cylinder. After the NNA, the final results were obtained by adding the equalizer function. The inverse process of 

the normalization made before the network training was applied to the simulation results. The obtained Neural Network 

models were tested to check out both the robustness and its capability to perform the reconstruction of the cylinder 

pressure from response measurements.  

 

 
Figure 7 - Comparison between the original (curve with ripples) and the filtered (smoother curve) signals.  

 
The external validation of the obtained model was performed in the following way: Nine old vectors were kept and a 

completely new data vector was entered to simulate the response of the model. Twenty new vibration responses were 

used for each cylinder with data acquired from two different engines. The results showed high accuracy proving the 

robustness of the obtained models, Figure 8 show typical results.  
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     a) Cylinder pressure for 800 rpm and 10% load            b) Cylinder pressure for 800 rpm and 50% load. 

 

 
 c) Cylinder pressure for 1600 rpm and 10% load        d) Cylinder pressure for 800 rpm and 100% load. 

 

Figure 8 - Comparison between the reconstructed (doted line) and the original signals (continuous line). 

 
The summery of the obtained results can be seen in Table 1 and Table 2. The average and standard deviation of the 

maximum cylinder pressure (
MAX

P ) were selected for comparison. 

 
TABLE 1 – COMPARISON BETWEEN THE AVERAGE OF THE MEASURED AND RECONSTRUCTED 

MAXIMUM CYLINDER PRESSURE (
MAX

P ) 

Average of the 
Maximun Cilinder 
Pressure (Pmax) 

800 rpm 1600 rpm 2000 rpm 

Carga Carga Carga 

10% 50% 100% 10% 50% 100% 10% 50% 100% 
Cil. 1 Medido 62.88 79.55 78.93 55.95 87.79 146.56 64.21 97.41 143.65 

Reconstruido 62.27 77.59 77.80 54.21 87.61 145.24 62.52 95.62 141.04 

Cil. 2 Medido 63.78 78.26 79.30 56.35 87.95 146.13 65.10 97.20 143.40 

Reconstruido 62.41 78.69 78.28 56.22 87.67 146.13 63.66 95.59 141.96 

Cil. 3 Medido 64.48 78.60 80.16 57.06 87.94 147.77 64.71 96.66 143.01 

Reconstruido 63.69 79.68 79.01 55.12 88.27 146.77 62.77 94.42 141.01 

Cil. 4 Medido 65.05 81.73 80.08 58.49 89.60 149.02 67.49 103.81 154.35 

Reconstruido 64.38 80.70 79.28 57.72 89.76 147.86 66.28 100.51 150.13 

Cil. 5 Medido 63.68 81.72 80.14 58.26 90.09 149.31 66.06 103.81 154.35 

Reconstruido 62.98 80.37 79.25 56.38 89.84 148.36 64.87 101.72 152.58 

Cil. 6 Medido 65.18 81.06 79.77 58.86 90.36 149.82 70.83 105.05 153.42 

Reconstruido 64.63 80.28 79.05 58.84 90.17 148.86 69.56 102.89 150.90 

 
Two of the most important qualities, adaptivity and fault tolerance, were determinant to choose neural networks for the 

new approach on the vibration based reconstruction of the cylinder pressure curve. So, if the model is robust and 

reliable, it should have these characteristics and, consequently, respond in a proper way when it is exposed to 
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completely unknown data. The obtained neural network models show outstanding results for the reconstruction of the 

cylinder pressure curve from vibration measurements. The new approach can be used for onboard engine diagnostics. 

 

 

6. CONCLUSIONS 

 

 The cylinder pressure curve was successfully reconstructed based on a response vibration signal by using Neural 

Network Methods.  

 The noise reduction of the data was successfully handled by filtering and windowing techniques. 

 The Neural Network Model proved to be very robust as it can work with absolutely unknown data and provide 

trustworthy results. The accuracy of the NNM results was not diminished at high engine speeds above 1600 rpm. 

 Finally, the obtained results showed high accuracy, the standard deviation of the average maximum cylinder 

pressure (
MAX

P ) varied between 0.03 and 1.01 percent.  

 

TABLE 2 – COMPARISON BETWEEN THE STANDARD DEVIATION OF THE MEASURED AND 

RECONSTRUCTED MAXIMUM CYLINDER PRESSURE (
MAX

P ) 

Standard Deviation  
[%] 

800 rpm 1600 rpm 2000 rpm 

Load Load Load 

10% 50% 100% 10% 50% 100% 10% 50% 100% 
Cil. 1 Medido 0.92 0.67 1.85 0.88 0.62 0.69 1.54 1.87 1.17 

Reconstruido 0.09 0.05 0.13 0.37 0.13 0.02 0.47 0.09 0.02 

Cil. 2 Medido 0.97 0.69 1.63 1.02 0.55 0.72 1.46 1.56 0.92 

Reconstruido 0.11 0.33 0.17 0.96 0.03 0.30 0.36 0.07 0.17 

Cil. 3 Medido 1.19 0.93 2.38 1.37 0.38 0.86 2.08 1.75 1.40 

Reconstruido 0.03 0.03 0.12 0.07 0.25 0.07 0.36 0.10 0.07 

Cil. 4 Medido 1.57 2.09 1.95 1.47 0.72 0.58 0.99 1.18 1.01 

Reconstruido 0.13 0.13 0.03 0.45 0.16 0.007 0.32 0.28 0.10 

Cil. 5 Medido 0.61 3.65 1.62 1.49 0.76 0.58 0.99 1.18 1.01 

Reconstruido 0.07 0.05 0.08 0.28 0.02 0.06 0.36 0.04 0.27 

Cil. 6 Medido 1.67 2.10 1.01 1.45 0.66 0.55 1.38 1.20 0.57 

Reconstruido 0.05 0.27 0.09 1.01 0.06 0.06 0.14 0.07 0.17 
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