

41

INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)
ISSN 1814-6333

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

A GENETIC ALGORITHM FOR THE RESOURCE CONSTRAINED PROJECT SCHEDULING

PROBLEM (RCPSP)

Edgar Gutiérrez Franco*, Fernando La Torre Zurita**, Gonzalo Mejía Delgadillo**

* School of Industrial Engineering, Universidad de La Sabana

** Department of Industrial Engineering, Universidad de los Andes, Bogotá - Colombia

ferltz@gmail.com

ABSTRACT

This paper proposes a Genetic Algorithm for the Resource Constrained Project Scheduling Problem (RCPSP).

Resources are renewable and there is a unique way to perform the activities. This work employs Genetics

Algorithms to schedule project activities to minimize makespan subject to precedence constraints and resources

availability. A serial generation scheme is used to obtain the schedule. The algorithm was programmed using Object

Oriented programming that allows generating individuals with their own attributes such as activity sequence and

makespan. A Genetic Algorithm (GA) is proposed which uses a novel chromosome representation. The issues of the

GA parameter tuning are also discussed in this paper. A computer tool that allows the user to define activities,

precedence constraints and resource capacity was developed.

Keywords: RCPSP, Project Scheduling, Resource Constraints Projects, Genetics Algorithms.

1 . INTRODUCTION

In project management, decisions depend directly on both quantity and quality of information and indirectly on the

application method and technique used to schedule and control. So far, the time factor has played a huge role in

scheduling and has always been related to its logic structure. Every project has its own precedence constraints,

which means that each activity can be processed when all its predecessors are finished. In general, the purpose of

Project Schedules is to minimize its completion time or makespan (Cmax), subject to precedence constraints.

A more general version assumes that to develop one or more activities, resources such as tools, equipment,

machines, or human resources, are needed. Each resource has a limited capacity. Consequently, at certain moments,

one activity may not begin their processing due to resource constraints even if all their predecessors are finished.

Problems of this type are well known as Resource Constrained Project Scheduling Problems (RCPSP). The RCPSP

occurs frequently in high scale projects management such as software development, generation plants building, and

military industry projects as design, development and building of nuclear submarines (Pinedo and Chao [1]).

2 . BIBLIOGRAPHICAL REVISION

This problem has been studied by many authors proposing different solution methodologies. Some authors are

Bartschi [2] who applies a GA for the MRCPSP solution, a multimodal scheduling problem. Colak et al. [3] solved

the RCPSP by using neuronal networks. Mingozzi and Maniezzo [16] found lower bounds by means of a

combination of techniques, integer programming and branch and bound. Hartmann [10] proposes a GA in which

every gene of a chromosome is a dispatch rule, and he uses these genes as criteria to break ties inside the generation

of sequences. Another important researcher is Hartmann [11], who models GA combining it with local search in

case no improvements in solution are found, when passing from one generation to other. Kolisch [14] compares

some priority rules with serial programming outlines and parallel programming and reports some experiences.

Merckle et al. [15], solve this problem using ant colony technique (ACO), with good results. Ballestin [1] employs

heuristic techniques and a GA variation denoted Hybrid Genetic Algorithm. Rangaswamy [18] solves the problem

with Taboo Search (TS) and a two levels list. Jiang [13], propose a GA with variations on the sequence generation

scheme proposed by Hartmann [9]. Kolisch and Hartmann [14] compare the results of heuristics and metaheuristics

techniques when solving RCPSP. Debels and Vanhoucke [4] created a GA called (BPGA), which generates two

different kinds of populations using backward and forward sequence generation schemes.

3 . RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM DESCRIPTION

Resource Constrained Project Scheduling Problem (RCPSP) consists on executing a group of activities subject to

constraints. Precedence relationships force some activities to begin after the finalization of others. In addition,

processing every activity requires a predefined amount of resources, which are available in limited quantities in

every time unit. The RCPSP purpose is to find the starting times for the activities in a way that the difference

GUTIÉRREZ, LA TORRE Y MEJÍA

42

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

between the finalization time of the latest activity and the start of the earliest sequenced activity is minimized.

Blazewicz et al. (1983), referenced by Ballestin [1], proved that RCPSP, Job Shop classic generalization, belongs to

the NP – hard type problems, which implies that heuristic algorithms are necessary to get good quality solutions for

big instances.

RCPSP can be described as:

A project consists of a set of activities Vi = (1, 2, …, n). The activities 1 and n are dummy activities that represent

the project start and end, respectively.

Activities are related by two types of constraints. First, precedence relations are “finish-start” (FS) type that is to

say that j activity may just be started when i activity is concluded. For each activity j there is a Predj set of activities

that must be finalized before j can be started. The elements of Predj are called j immediate predecessors.

It is true, with no generality loss that:

Pred 1 and / Predj ij j n i j

An activity i is called a predecessor of j if it exists,

0 1 1 0 1, ,..... , with , ,k k ki i i i i i i j

+1iPred , 0,1,...,
bbi b k

The i activity is a j (immediate) successor if, j is an i (immediate) predecessor. The j immediate successors set are

denoted with Sucj. It is true that 1 (n) is predecessor (successor) of every activity. A second type of constraint is

related to resources. Activities consume resources that are provided in limited quantities. A set of K types of

renewable resources is defined. A limited quantity of resource k noted Rk is available at every time unit. While

being processed, an activity j needs rjk units of k K resource type during each period of duration dj (there is only

one way of processing the activities). The activities cannot be interrupted once they are started.

The dj, rjk, Rk parameters are supposed to be known, determined and integer. Also, d1= dn = 0 and r1, k = rnk = 0 for

every k K.

The RCPSP problem instance is solved if the starting times (or ending times) for each activity satisfy the

precedence and resources constraints, such that the duration of the project is minimized.

In Figure 1, an example of a project (denoted as PR1) is shown, Ballestin [1]. This project has n = 7 activities and K

= 1 type of renewable resources with 2 units of capacity. The figure has all the projects data. In Figure 2, a possible

sequence is represented with 8 units project duration. Figure 3 shows the optimal solution of the problem, with 5

units duration. The sequence is represented by a Gantt diagram. The horizontal axis represents time and the vertical

axis represents utilization of a type of resource. If there were more than one resource, it is necessary to draw a

diagram for every type of resource. Every rectangle represents an activity. The rectangle‟s length represents activity

duration, and the height shows number of units used by the activity.

1 i7

65

3

4

2

0/0 0/0

2/11/21/1

1/22/1

di/rj,1

K=1 ,

R1=2

Figure 1

A GENETIC ALGORITHM FOR THE …

43

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

Definition: sj (fj) is noted as the start (end) of the j activity in a sequence S that denotes a vector of starting times

{s1, s2,….., sn} or, similarly a vector of ending times {f1, f2,…..,fn}. s1=0 and sn = max{fi : i=1,…,n-1}. fn is length

or duration of project unless it is specified otherwise. If a sequence is feasible it will be noted as T(s), and defined

as a feasible solution, which meets all its precedence relationships and resource constraints.

An S sequence given,
j j j j() / f / f d fjA t j V s t j V t is an activity set being processed (active

activities) at time t.

Conceptually, RCPSP can be modeled as follows:

n

h j j

,

f (3.1)

s.a.

f f d (), 2,....., Pred (3.2)

; 0

j j

j k k

Min

s j n h

r R k K t
()

j j

 (3.3)

f 0 f 2,...., (3.4)

j A t

y j n

Objective function (3.1) minimizes activity ending time that states projects end, therefore the project duration.

Constraints (3.2) represent precedence relations, and constraints (3.3) limit resource utilization of every k resource

at any moment t. Finally, constraints (3.4) define the decision variables as non negative integers. (3.1) – (3.4) is a

conceptual model because A(t) set are functions of decision variables. Therefore, if the RCPSP is intended to be

solved with integer mixed linear programming, another model must be used. RCPSP can be denoted as PS| prec |

Cmax according to Pinedo‟s [17] notation.

RCPSP, however, becomes a solvable problem in a polynomial time if resource constraints are eliminated (previous

conceptual model constraints (3.3)). The starting times for each activity are calculated as follows:

(1) s1 = 0;

(2) sj = max {sh + dh / h Predj}, j =2, ..., n.

This method generates a sequence denominated ES (Earliest Start) sequence, where every activity is sequenced as

early as possible, taking into account the precedence relationships. ESj is the starting time for j activity in ES

sequence and EFj = ESj + dj is the earliest ending time for j activity.

The opposite concept also exists. A sequence (possible with respect to the precedence relations) with the same

project length as ES with each activity starting at the latest possible time. In this case the calculations or recursion

are performed backwards, and the sequence is denominated LS (Latest Start):

(1) sn = ES sequence duration

(2) sj = min{sh /j Ph} - dj , j =n-1, ..., 1.

sj is obtained as LSj and LFj = LSj + dj the j activity latest ending time.

4

5

1 2 3 4 5 6

2

3

7

6

2

1

R1

0

4

5

1 2 3 4 5 6

2

3

7 8

6

2

1

R1

0

 Figura 2 Figura 3

GUTIÉRREZ, LA TORRE Y MEJÍA

44

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

In Figures 4 and 5 the ES an LS sequences in correspondence with PR1 are represented, with 4 units duration.

4

5

1 2 3 4 5 6

2

3

7

6

2

1

R1

0

3

4

5

1 2 3 4 5 6

2

3

7

6

2

1

R1

0

3

 Figure 4

4

5

1 2 3 4 5 6

2

3

7

6

2

1

R1

0

3

4

5

1 2 3 4 5 6

2

3

7

6

2

1

R1

0

3

 Figure 5

The ES and LS sequences (or their equivalent, in forward and backward calculations) define a set of activities

denoted as critical activities, whose ESj = LSj (in PR1 4, 5 and 6 activities). Every path in the graph whose length

(measured by the sum of node durations that compose it) is the same as the ES (and LS) is defined as the critical

path. The only critical path in PR1 is {4, 5, 6}. We will denote by CPM the common length of the critical paths.

The CPM is a lower bound for the duration for the RCPSP. The deviation with respect to the CPM is used often for

comparison among heuristics since, for large instances, the best solution is usually not known.

In the mathematical model proposed by Pinedo and Chao [17], xjt is a variable with value 1 when j activity is

completed in time t and 0 otherwise.

Then, i resource quantity needed by j activity during the [t-1,t] interval is:

1

,

jt p

ij j u

u t

R x

If H is a makespan upper bound, a simple but not very tight value may be obtained using the following expression:

1

n

j

j

H p

Then, time to complete j activity is given by:

,

1

H

j t

t

t x

and the makespan can be expressed as:

1,

1

H

n t

t

t x

An Integer programming formulation can now be formulated as follows:

1,

1

, ,

1 1

1

,

1

min (4.1)

. .

0 (4.2)

,
j

H

n t

t

H H

j t k k t

t t

t pn

ij j u i

j u t

t x

s a

t x p t x j k A

R x R i t

,

1

 (4.3)

1 (4.4)
H

j t

t

x j

A GENETIC ALGORITHM FOR THE …

45

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

Schedule objective is to minimize makespan. Set (4.1) of constraints assures that precedence restrictions are met, j

activity is followed by k activity. Set (4.2) of constraints ensures that the total i resource demand at t time, cannot

exceed resource availability. The third set of constraint ensures that every activity is processed.

When the number of activities is large and the planning horizon is long, the RCPSP is usually solved using

heuristics and metaheuristics, which proved already to provide effective solutions.

4 . OBJECT ORIENTED MODEL

The RCPSP problem was modeled by a class called “individual”, which is represented in Figure 5. This class

contains four attributes:

 Activities Sequence: Array that contains sequence of the activities.

 Starting Dates: Vector that contains starting dates of every activity respecting precedence restrictions.

 Ending Dates: Vector that contains the ending dates of every activity.

 Cmax: The value of the objective function. As shown in section 3, it is the largest completion time of all

project activities.

Figure 6 - Individual object representation

In Figure 7 the individual‟s structure that takes part in every generation at Genetic Algorithm is shown. It has been

decided to use an objects vector to take advantage of Java tools as comparator interface for arrangement of every

position and methods instead of the “sort” utility.

Figure 7 - Individual‟s population

5 . GENETIC ALGORITHM

GA, „Genetic Algorithms‟ (Holland, 1975), is a search algorithm based on the natural selection mechanism and on

genetics. It states an analogy between a set of problems to be solved and the set of individuals in a natural

population. Solution information is codified in a string of numbers called chromosome. Potential solution

chromosome is measured using an evaluation function (in which the problem objective function plays an important

role), and it is called solution fitness. Pseudo algorithm GA is shown below:

Pseudo-Algorithm GA

Set t=0. Generate initial population Pt

Evaluate the population Pt

Activities

Sequence

Starting Dates

Ending Dates

Cmax

Individual

………….

GUTIÉRREZ, LA TORRE Y MEJÍA

46

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

While stopping criteria is not satisfied

{Select some elements from Pt to copy in Pt+1

Perform crossover on selected elements of Pt and move them to Pt+1

Perform mutation on selected elements from Pt and take them to Pt+1

Evaluate the new population Pt+1

Pt = Pt+1}

Main elements that characterize a GA application are solution codification, crossover operators that are used and

evaluation function. Other important decisions that may be taken into account to construct a GA are the initial

population, mutation operators, parents‟ selection rules and elimination of one or more individuals and the

algorithm‟s termination criteria

5.1 Schedule Generation Schemes

Schedule Generation Schemes (SGS) are a very important part of many procedures in RCPSP. The SGS build a

partial sequence, which initially sets the start 0 to the activity 1. A partial sequence is a sequence where only a

subset of n activities has been scheduled. Two different SGS exist: Series and Parallel. Series uses the increase of

number of activities to make the steps, whereas Parallel uses the temporary increase. In this paper Serial SGS is the

employed scheme, because it generates active programs, i.e. an operation cannot be moved backwards in time

without moving one or more forward.

Serial SGS consists on g=1, ..., n-2 stages (n is the number of activities). In every stage an activity is selected and

scheduled as early possible, respecting precedence relationship and resource constraints. There are two associated

sets to every g stage. The Secg set has activities already scheduled and Dg is the set of selectable activities. Fg is a

set of finalization times for all elements of set Dg. An activity is selectable if it has not been scheduled and all its

predecessors have already been scheduled. Mathematically we can define Dg as fallows:

 \ ;g g j gD j V Sec Pred Sec

The union of these sets is not set V in general, since it can also have non programmed - non eligible activities.

Series Pseudo - Algorithm

1. Beginning: s1 = f1 = 0, Sec1 = {1}.

2. From g = 2 until n-1, do:

2.1 Calculate Dg, Fg, kR (t) (k K; t Fg).

()kR t is defined as the remaining availability of the resource of type k at moment t.

2.2 Select j Dg.

2.3 ESj = max h PREDj {fh}.

2.4 sj = min{t/ t ≥ ESj; t Fg; rj,k ≤ kR (τ) k K, τ [t,t+dj]∩ Fg }.

2.5 fj = sj +dj.

2.6 Secg = Secg-1 U {j}.

3. fn = max h PREDn {fh}.

The first stage and the last stage are assigned as a dummy activities and both are included in a partial sequence.

Beginning every stage g a set of selectable Dg ending times, set Fg and remaining availabilities kR (t) are calculated.

After that, an activity j is selected from selectable activities set, its starting time is calculated by determining first

ESj, earliest starting time j, according to precedence relations and its predecessor‟s activities denoted by h in the

partial sequence, and then, calculating the earliest starting time related ESj resources. Ending time j is calculated by

adding dj to sj. Table 1 shows how the serial scheme generates the sequences showed in Figure 3.

A GENETIC ALGORITHM FOR THE …

47

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

TABLE 1 - SERIAL GENERATION EXAMPLE

g 1 2 3 4 5

Secg
{1) -1,4 (1,4,5) {1,4,5,6} (1,2,4,5,6)

F g
{0} -0,1 (0,1,2) (0,1,2,4) (0,1,2,4)

Dg
-2,4 -2,5 -2,6 -2 -3

j 4 5 6 2 3

A possible sequence S = (s1, s2, ... , sn) is said to be left active or left justified if there are no activities that may be

started before without retarding any other activity. Similarly, a possible sequence is said to be right active or right

justified if there is no activity that can be started after without delaying any other activity or delaying the sequence

duration. Kolisch [14] proved that Series SGS generates active sequences.

In PR1 the only optimal solution is Figure 4 sequence that is an active sequence with no delays. Series SGS is able

to transform any list of activities in a possible sequence. To do that it is just necessary to change the 2.2 step “Select

j Dg” “for j = jg”, (Hartmann [9]). Series SGS transforms the activity list λ = (1 4 5 2 6 3 7) for PR1 in Figure 4

sequence. Parallel SGS may also apply, calculating a priority vector according activities list, by using pi = order (i,

λ) (order or position of i in λ), and selecting activity in Dg with the lowest priority level. This modification leads to

selecting activities to schedule in an order not designated by the activities list. Therefore, Serial SGS is usually used

as the scheduling scheme when implementing this representation. With Serial SGS codification all active sequences

can be obtained. In general, an active sequence admits more than one representation as activity list and redundancy

is not controllable a priori.

5.2 Chromosome Representation

The chosen representation for the RCPSP is based on the concept of activities list that has shown better

performances compared to other representations according to Hartmann [11]. In an activities list λ=(j1,…,jJ) each

non dummy activity J appears exactly once. Only activities lists that meet precedence constraints are considered. An

activities list is able to be created if the predecessor activities are executed always before any activity on the list.

Formally it can be expressed as Pj c {0,j1,…, ji-1} for i=1,…..J.

An individual is represented by:

1(,......)I I

JI j j

In the activities sequence, precedence constraints are supposed to be met, this can be expressed formally like this:

1 1 1,......, 1,......., and 0, ,...., for 1,....I
i

I I I I

J ij
j j J P j j i J

Each chromosome is related to a program that is calculated by using serial SGS, the initial node that corresponds to

a dummy activity, start in time 0. The following activities are scheduled in an order defined by list (j1,…, jJ).

5.3 Crossover Operators

For activities list building two crossover operators of one and two points are considered.

5.3.1 One Point Crossover

Two individuals denoted as parents are selected 1 (λ1), parent 2 (λ2):

1 1

1 1 1 2 2 2,....., and ,.....,
n n

j j j j

Then, a q number is selected randomly between 1 and J, to obtain two new individuals son 1 (h1) and son 2 (h2).

Position i = 1, …, q, in h1 is taken from λ1 as follows:

GUTIÉRREZ, LA TORRE Y MEJÍA

48

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

1 1() : ()i ih j j

Activities from i=q+1, …,J positions in h1 are taken from λ2, however works already taken from λ1 can not be

considered again. Then it is obtained:

1 2() : ()i kh j j

where k is the smallest index 2 1

1 1() (,......,)k ij h j j .

As a result, relative positions on parent‟s list are preserved. In this way parents helps their offspring objective

function.

To illustrate this in a better form see next example: 1 21,3,2,5,4,6 , 2,4,6,1,3,5 with q=3, an individual

son is obtained: h1= (1, 3, 2, 6, 4, 5).

5.3.2 Two Point Crossover

It is an extension of one point crossover where two integer numbers q1 and q2 are chosen randomly with 1≤q1<q2 ≤

J. Now h1 son is determined by activities list on the i=1……q1 of λ1 positions as follows:

1 1() : ()i ih j j

Activities on positions i=q1+1, …,q2 in h1 are taken from λ2, by:

1 2() : ()i k

h j j

where k is the smallest index from:
2 1

1 1
() (,......,)

ik
j h j j

Positions i=q2+1, …,J, are taken again from λ1 :
1 1
() : ()i kh j j where k is the smallest index from:

1 1
1 1

() (,......,)
ik

j h j j .

For this example, the new individual would be: h1= (1, 2, 4, 3, 5, 6)

Son chromosome is formed by first and third part from parent 1 and second part from parent 2.

5.4 Mutation

Given the chromosome based on λ activities list, the mutation operator modifies structure of the chromosome in the

following way: for every position i=1,……j-1, activities ji y ji+1 are exchanged with a defined probability, if the

result is an activity list that meet the precedence restrictions.

Operators of mutation reported in technical literature were proved to create activities lists. However, it must be

pointed out that mutation does not necessarily imply a change in schedule related to the chromosome, because

redundancy may exist in schedule representation.

5.5 Evolution Strategy

Employed strategy is named “elitist” and it consists of selecting the best individual and generating an important

number of individual of next generation from them, while other portion is generated by all individuals.

5.6 Fitness Function

The objective function to minimize is the ending time of all activities which is makespan (Cmax). The fitness

function is calculated as 1/Cmax.

A GENETIC ALGORITHM FOR THE …

49

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

6 . RESULTS

The RCPSP instances were solved by using a program built in Java language. The program was run in a Pentium IV

3.0 MHz speed processor. Two instances were run from PSLIB library, from http://129.187.106.231/psplib/ URL.

The sizes of the instances were 60 and 30 activities with 4 limited resources, and each activity with a maximum of 3

successors. The following tables show the parameters for the algorithm.

TABLE 2

30 ACTIVITIES

Population size 100

Parents percent 0.3

Sons percent 0.7

Crossover 2 points

Cmax average 43.3

Run average time 6.48

Optimal 43

Standard deviation 0.80871688

TABLE 3

30 ACTIVITIES

Population size 100

Parents percent 0.3

Sons percent 0.7

Crossover 1 point

Cmax average 46.4

Run average time 3.2885

Optimal 43

Standard deviation 0.86036613

In table 2 and 3 results for 30 activities project are shown. In this project method varies in the crossover method by

two and one point respectively, showing best results with two-point crossover method, even if its execution average

time was higher due to larger number of calculations.

TABLE 4

60 ACTIVITIES

Population size 100

Parents percent 0.3

Sons percent 0.7

crossover 2 points

Run average time 34.9017

Cmax average 85

http://129.187.106.231/psplib/

GUTIÉRREZ, LA TORRE Y MEJÍA

50

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

TABLE 5

60 ACTIVITIES

Population size 100

Parents percent 0.3

Sons percent 0.7

crossover 1 point

Run average time 29.3294333

Cmax average 85

In instances shown in Tables 4 and 5, a more complex project instance was tested. The same value of Cmax that is

referenced in PSLIB was found here (The optimal value is not specified).

It is easy to see that the objective function experiments a significant improvement in the first iterations and then it

stays on a local optimum for a large number of iterations. This behavior is normal in Genetic Algorithms working

with a high diversification level, generating at first a large search space and finding good solutions at the end. The

search is intensified by the use of elitism to generate little improvements in final generations.

7. CONCLUSIONS

Tests were made with different mutation probability values and even though there were some variations in the

schedule, no significant changes were produced in the objective function. This was mainly because redundancy

exists, which means that two different schedules with different sequences may have the same Cmax value. Use of

object oriented programming made easier to manipulate cromosomes and generations in the Genetic Algorithm. The

two-point crossover provided better results even at the expense of longer computational times. In the instance J60

that has a greater number of activities, the resulting Cmax was the same for different generations. This is due to the

many precedence and resource capacity restrictions such an instance has. Thus it is possible to see the lack of

freedom that the genetic operators have in such a restricted problem as RCPSP.

42

42.5

43

43.5

44

44.5

45

45.5

C
m

a
x

Generación

Convergencia Vs NºGeneración
Convergence Vs No Generation

Figure 8 - Genetic Algorithm Convergence for instance J30

A GENETIC ALGORITHM FOR THE …

51

UPB - INVESTIGACIÓN & DESARROLLO, No. 7: 41 – 52 (2007)

8. FUTURE RESEARCH

This work presents an object oriented model to generate a project scheduling and a computational tool to support

resources decision. We will use this technique to solve more general problems as multimode project scheduling

problems. We want also to try more instances to calibrate parameters as cross operator, population size and

generations number.

9. REFERENCES

[1] Ballestin F., Nuevos Métodos de Resolución del Problema de Secuenciación de Proyectos con Recursos

Limitados, PhD Thesis; Universidad de Valencia, Spain, http://www.tdx.cesca.es/TDX-0218104-170322/,

(2001).

[2] Bartschi M., A Genetic Algorithm for Resource-Constrained Scheduling, Master Thesis ; Massachusetts

Institute of Technology; (1996), http://lancet.mit.edu/~mwall/phd/thesis/

thesis.pdf.

[3] Colak S. Agarwal A. Erenguc S., Resource Constrained Scheduling Problem: A Hybrid Neural Approach, s/f;

http://www.cba.ufl.edu/dis/docs/papers/ResourceConstrainedProject

SchedulingAHybridNeuralApproach.pdf.

[4] Debels D., Vanhoucke M., A Bi-Population Based Genetic Algorithm for the Resource- Constrained Project

Scheduling Problem, February 2005

[5] Debels D., Vanhoucke M., A Decomposition-based Heuristic for the Resource-Constrained Project

Scheduling Problem, February de 2005, http://www.feb.ugent.be/fac/research/WP/Papers/wp_05_293.pdf.

[6] Dorigo M. Di Caro G., The Ant Colony optimization Metaheuristic, (1999),

http://citeseer.ist.psu.edu/cache/papers/cs/29622/http:zSzzSziridia.ulb.ac.bezSz~gdicarozSzPaperszSzOptBoo

k.pdf/dorigo99ant.pdf.

[7] Dorigo M., Stützle T., Ant Colony Optimization, (2004), MIT Press; Massachussets; pp.2-39; pp.177-180

[8] Gonçalves J., Mendes J., Resende M., A Genetic Algorithm for the Resource Constrained Multi-Project

Scheduling Problem, January 2006; http://public.research.att.com/~mgcr/

/garcmpsp.pdf.

[9] Hartmann S., Project Scheduling Under Limited Resources, Springer, Berlin, (1999).

[10] Hartmann S., Self-Adapting Genetic algorithm with an Application to Project Scheduling, June 1999;

http://citeseer.ifi.unizh.ch/cache/papers/cs/9819/http:zSzzSzwww.bwl.uni-

kiel.dezSzbwlinstitutezSzProdzSzmabzSzsh_homezSzga_ext.pdf/hartmann99selfadapting.pdf.

[11] Hartmann S., A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling, (1998),

http://halfrunt.bwl.uni-kiel.de/bwlinstitute/Prod/mab/hartmann/

ga_sm4.pdf.

[12] Hartmann S., Drexl A., Project Scheduling with Multiple Modes: A Comparison of Exact Algorithms, (1998),

http://halfrunt.bwl.uni-kiel.de/bwlinstitute/Prod/mab/hartmann/

/exact2.pdf.

[13] Jiang Q., A Genetic Algorithm for Multiple Resource Constrained Project Scheduling, (2004), Master Thesis

University of Wollongong, www.library.uow.edu.au/adt-NWU/uploads/ approved/adt-

NWU20050812.124618/public/02Whole.pdf.

[14] Kolisch R., Sprecher A., PSPLIB – Aproject scheduling problem library, March 1996,

http://citeseer.ist.psu.edu/cache/papers/cs/2982/ftp:zSzzSzftp.bwl.unikiel.dezSzpubzSzoperations-

researchzSzwp396.pdf/kolisch96psplib.pdf.

 [15] Merkle D., Middendorf M., Schmeck H., Ant Colony Optimization for Resource-Constrained Project

Scheduling, pacosy.informatik.uni-leipzig.de/pv/Personen/ middendorf/Papers/RCPSP-GECCO.ps

[16] Mingozzi A., Maniezzo V., An Exact Algorithm for the Resource Constrained Project Scheduling Problem

Based on a New Mathematical Formulation, October 1995,

www.personal.dundee.ac.uk/~asjain/papers/csts.ps

[17] Pinedo M. , X. Chao; (1999); Operations Scheduling and applications in Manufacturing, Algorithms and

Systems; Prentice Hall; New York ; Second Edition;

[18] Ragaswany B., Singh A., Glover Fred, Tabu Search Candidate List Strategies in Scheduling, Enero de 1998,

www.personal.dundee.ac.uk/~asjain/papers/csts.ps.

http://www.cba.ufl.edu/dis/docs/papers/ResourceConstrainedProject
http://public.research.att.com/~mgcr
http://halfrunt.bwl.uni-kiel.de/bwlinstitute
http://halfrunt.bwl.uni-kiel.de/bwlinstitute/Prod/

